Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ocean Model (Oxf) ; 144: None, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37927403

RESUMO

Research performed to-date on data assimilation (DA) in storm surge modeling has found it to have limited value for predicting rapid surge responses (e.g., those accompanying tropical cyclones). In this paper, we submit that a well-resolved, barotropic hydrodynamic model is typically able to capture the surge event itself, leaving slower processes that determine the large scale, background water level as primary sources of water level error. These "unresolved drivers" reflect physical processes not included in the model's governing equations or forcing terms, such as far field atmospheric forcing, baroclinic processes, major ocean currents, steric variations, or precipitation. We have developed a novel, efficient, optimal interpolation-based DA scheme, using observations from coastal water level gages, that dynamically corrects for the presence of unresolved drivers. The methodology is applied for Hurricane Matthew (2016) and results demonstrate it is highly effective at removing water level residuals, roughly halving overall surge errors for that storm. The method is computationally efficient, well-suited for either hindcast or forecast applications and extensible to more advanced techniques and datasets.

2.
Sci Rep ; 9(1): 10620, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337803

RESUMO

Coastal North Carolina, USA, has experienced three extreme tropical cyclone-driven flood events since 1999, causing catastrophic human impacts from flooding and leading to major alterations of water quality, biogeochemistry, and ecological conditions. The apparent increased frequency and magnitudes of such events led us to question whether this is just coincidence or whether we are witnessing a regime shift in tropical cyclone flooding and associated ecosystem impacts. Examination of continuous rainfall records for coastal NC since 1898 reveals a period of unprecedentedly high precipitation since the late-1990's, and a trend toward increasingly high precipitation associated with tropical cyclones over the last 120 years. We posit that this trend, which is consistent with observations elsewhere, represents a recent regime shift with major ramifications for hydrology, carbon and nutrient cycling, water and habitat quality and resourcefulness of Mid-Atlantic and possibly other USA coastal regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA