Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 24(3): 2971-80, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906864

RESUMO

Recent experimental investigations on the reduction of internal quantum efficiency with increasing current density in (AlInGa)N quantum well structures show that Auger recombination is a significant contributor to the so-called "droop" phenomenon. Using photoluminescence (PL) test structures, we find Auger processes are responsible for at least 15 % of the measured efficiency droop. Furthermore, we confirm that electron-electron-hole (nnp) is stronger than electron-hole-hole (npp) Auger recombination in standard LEDs. The ratio of respective Auger coefficients is determined to be in the range 1 < Cnnp/Cnpp ≤ 12. This asymmetry is shown to limit the detection efficiency of Auger processes in our PL-based approach.

2.
Nanomaterials (Basel) ; 11(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805881

RESUMO

Besides high-power light-emitting diodes (LEDs) with dimensions in the range of mm, micro-LEDs (µLEDs) are increasingly gaining interest today, motivated by the future applications of µLEDs in augmented reality displays or for nanometrology and sensor technology. A key aspect of this miniaturization is the influence of the structure size on the electrical and optical properties of µLEDs. Thus, in this article, investigations of the size dependence of the electro-optical properties of µLEDs, with diameters in the range of 20 to 0.65 µm, by current-voltage and electroluminescence measurements are described. The measurements indicated that with decreasing size leakage currents in the forward direction decrease. To take advantage of these benefits, the surface has to be treated properly, as otherwise sidewall damages induced by dry etching will impair the optical properties. A possible countermeasure is surface treatment with a potassium hydroxide based solution that can reduce such defects.

3.
Nat Commun ; 11(1): 5092, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037193

RESUMO

The combination of inorganic semiconductors with organic thin films promises new strategies for the realization of complex hybrid optoelectronic devices. Oxidative chemical vapor deposition (oCVD) of conductive polymers offers a flexible and scalable path towards high-quality three-dimensional inorganic/organic optoelectronic structures. Here, hole-conductive poly(3,4-ethylenedioxythiophene) (PEDOT) grown by oxidative chemical vapor deposition is used to fabricate transparent and conformal wrap-around p-type contacts on three-dimensional microLEDs with large aspect ratios, a yet unsolved challenge in three-dimensional gallium nitride technology. The electrical characteristics of two-dimensional reference structures confirm the quasi-metallic state of the polymer, show high rectification ratios, and exhibit excellent thermal and temporal stability. We analyze the electroluminescence from a three-dimensional hybrid microrod/polymer LED array and demonstrate its improved optical properties compared with a purely inorganic microrod LED. The findings highlight a way towards the fabrication of hybrid three-dimensional optoelectronics on the sub-micron scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA