Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Immunity ; 40(6): 896-909, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24882217

RESUMO

Animal host defense against infection requires the expression of defense genes at the right place and the right time. Understanding such tight control of host defense requires the elucidation of the transcription factors involved. By using an unbiased approach in the model Caenorhabditis elegans, we discovered that HLH-30 (known as TFEB in mammals) is a key transcription factor for host defense. HLH-30 was activated shortly after Staphylococcus aureus infection, and drove the expression of close to 80% of the host response, including antimicrobial and autophagy genes that were essential for host tolerance of infection. TFEB was also rapidly activated in murine macrophages upon S. aureus infection and was required for proper transcriptional induction of several proinflammatory cytokines and chemokines. Thus, our data suggest that TFEB is a previously unappreciated, evolutionarily ancient transcription factor in the host response to infection.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Infecções Estafilocócicas/imunologia , Animais , Autofagia/genética , Autofagia/imunologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Caenorhabditis elegans/genética , Enterococcus faecalis/imunologia , Imunidade Inata , Macrófagos/imunologia , Camundongos , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Interferência de RNA , RNA Interferente Pequeno , Infecções por Salmonella/imunologia , Salmonella enterica/imunologia , Transdução de Sinais/imunologia , Staphylococcus aureus/imunologia , Ativação Transcricional/genética , Ativação Transcricional/imunologia
2.
Proc Natl Acad Sci U S A ; 114(23): 6022-6027, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533366

RESUMO

Endogenous hydrogen sulfide (H2S) renders bacteria highly resistant to oxidative stress, but its mechanism remains poorly understood. Here, we report that 3-mercaptopyruvate sulfurtransferase (3MST) is the major source of endogenous H2S in Escherichia coli Cellular resistance to H2O2 strongly depends on the activity of mstA, a gene that encodes 3MST. Deletion of the ferric uptake regulator (Fur) renders ∆mstA cells hypersensitive to H2O2 Conversely, induction of chromosomal mstA from a strong pLtetO-1 promoter (P tet -mstA) renders ∆fur cells fully resistant to H2O2 Furthermore, the endogenous level of H2S is reduced in ∆fur or ∆sodA ∆sodB cells but restored after the addition of an iron chelator dipyridyl. Using a highly sensitive reporter of the global response to DNA damage (SOS) and the TUNEL assay, we show that 3MST-derived H2S protects chromosomal DNA from oxidative damage. We also show that the induction of the CysB regulon in response to oxidative stress depends on 3MST, whereas the CysB-regulated l-cystine transporter, TcyP, plays the principle role in the 3MST-mediated generation of H2S. These findings led us to propose a model to explain the interplay between l-cysteine metabolism, H2S production, and oxidative stress, in which 3MST protects E. coli against oxidative stress via l-cysteine utilization and H2S-mediated sequestration of free iron necessary for the genotoxic Fenton reaction.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Sulfurtransferases/metabolismo , Antibacterianos/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Dano ao DNA/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfurtransferases/fisiologia
3.
Proc Natl Acad Sci U S A ; 109(46): 18909-14, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23027967

RESUMO

Staphylococcus aureus peptidoglycan (PG) is densely functionalized with anionic polymers called wall teichoic acids (WTAs). These polymers contain three tailoring modifications: d-alanylation, α-O-GlcNAcylation, and ß-O-GlcNAcylation. Here we describe the discovery and biochemical characterization of a unique glycosyltransferase, TarS, that attaches ß-O-GlcNAc (ß-O-N-acetyl-D-glucosamine) residues to S. aureus WTAs. We report that methicillin resistant S. aureus (MRSA) is sensitized to ß-lactams upon tarS deletion. Unlike strains completely lacking WTAs, which are also sensitive to ß-lactams, ΔtarS strains have no growth or cell division defects. Because neither α-O-GlcNAc nor ß-O-Glucose modifications can confer resistance, the resistance phenotype requires a highly specific chemical modification of the WTA backbone, ß-O-GlcNAc residues. These data suggest ß-O-GlcNAcylated WTAs scaffold factors required for MRSA resistance. The ß-O-GlcNAc transferase identified here, TarS, is a unique target for antimicrobials that sensitize MRSA to ß-lactams.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Resistência a Meticilina/fisiologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Ácidos Teicoicos/metabolismo , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Parede Celular/genética , Deleção de Genes , Glicosilação , Glicosiltransferases/antagonistas & inibidores , Glicosiltransferases/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Ácidos Teicoicos/genética , beta-Lactamas/farmacologia
4.
PLoS Pathog ; 8(7): e1002798, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792069

RESUMO

Understanding host defense against microbes is key to developing new and more effective therapies for infection and inflammatory disease. However, how animals integrate multiple environmental signals and discriminate between different pathogens to mount specific and tailored responses remains poorly understood. Using the genetically tractable model host Caenorhabditis elegans and pathogenic bacterium Staphylococcus aureus, we describe an important role for hypoxia-inducible factor (HIF) in defining the specificity of the host response in the intestine. We demonstrate that loss of egl-9, a negative regulator of HIF, confers HIF-dependent enhanced susceptibility to S. aureus while increasing resistance to Pseudomonas aeruginosa. In our attempt to understand how HIF could have these apparently dichotomous roles in host defense, we find that distinct pathways separately regulate two opposing functions of HIF: the canonical pathway is important for blocking expression of a set of HIF-induced defense genes, whereas a less well understood noncanonical pathway appears to be important for allowing the expression of another distinct set of HIF-repressed defense genes. Thus, HIF can function either as a gene-specific inducer or repressor of host defense, providing a molecular mechanism by which HIF can have apparently opposing roles in defense and inflammation. Together, our observations show that HIF can set the balance between alternative pathogen-specific host responses, potentially acting as an evolutionarily conserved specificity switch in the host innate immune response.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Pseudomonas aeruginosa/imunologia , Staphylococcus aureus/imunologia , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Especificidade de Hospedeiro , Imunidade Inata , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição/genética
5.
PLoS Pathog ; 6: e1000982, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617181

RESUMO

The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus-triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with potentially conserved roles also in mammals.


Assuntos
Caenorhabditis elegans/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Animais , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Infecções por Pseudomonas/patologia , Infecções Estafilocócicas/patologia , Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA