Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(7): e1011959, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008516

RESUMO

An essential aspect of positive-sense RNA virus replication is anchoring the replication complex (RC) to cellular membranes. Positive-sense RNA viruses employ diverse strategies, including co-translational membrane targeting through signal peptides and co-opting cellular membrane trafficking components. Often, N-terminal nonstructural proteins play a crucial role in linking the RC to membranes, facilitating the early association of the replication machinery. Astroviruses utilize a polyprotein strategy to synthesize nonstructural proteins, relying on subsequent processing to form replication-competent complexes. This study provides evidence for the perinuclear ER membrane association of RCs in five distinct human astrovirus strains. Using tagged recombinant classical human astrovirus 1 and neurotropic MLB2 strains, we establish that the N-terminal domain guides the ER membrane association. We identified di-arginine motifs responsible for the perinuclear ER retention and formation of functional RCs through mutational analysis of the N-terminal domain in replicon and reverse genetics systems. In addition, we demonstrate the association of key components of the astrovirus replication complex: double-stranded RNA, RNA-dependent RNA polymerase, protease, and N-terminal protein. Our findings highlight the intricate virus-ER interaction mechanism employed by astroviruses, potentially leading to the development of novel antiviral intervention strategies.

2.
PLoS Biol ; 21(7): e3001815, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459343

RESUMO

During the last decade, the detection of neurotropic astroviruses has increased dramatically. The MLB genogroup of astroviruses represents a genetically distinct group of zoonotic astroviruses associated with gastroenteritis and severe neurological complications in young children, the immunocompromised, and the elderly. Using different virus evolution approaches, we identified dispensable regions in the 3' end of the capsid-coding region responsible for attenuation of MLB astroviruses in susceptible cell lines. To create recombinant viruses with identified deletions, MLB reverse genetics (RG) and replicon systems were developed. Recombinant truncated MLB viruses resulted in imbalanced RNA synthesis and strong attenuation in iPSC-derived neuronal cultures confirming the location of neurotropism determinants. This approach can be used for the development of vaccine candidates using attenuated astroviruses that infect humans, livestock animals, and poultry.


Assuntos
Infecções por Astroviridae , Gastroenterite , Mamastrovirus , Criança , Animais , Humanos , Pré-Escolar , Idoso , Mamastrovirus/genética , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/diagnóstico , Proteínas do Capsídeo/genética , Capsídeo , Filogenia
3.
J Virol ; 97(3): e0003823, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779761

RESUMO

Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.


Assuntos
Vírus da Bronquite Infecciosa , Mamastrovirus , Mutagênese Insercional , Animais , Humanos , Regiões 3' não Traduzidas/genética , Galinhas/virologia , Vírus da Bronquite Infecciosa/genética , Mamastrovirus/genética , Mutagênese Insercional/genética , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Replicação Viral/genética , Estabilidade de RNA/genética , Deleção de Sequência/genética
4.
J Virol ; 95(20): e0097321, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319778

RESUMO

Alphaviruses (family Togaviridae) include both human pathogens such as chikungunya virus (CHIKV) and Sindbis virus (SINV) and model viruses such as Semliki Forest virus (SFV). The alphavirus positive-strand RNA genome is translated into nonstructural (ns) polyprotein(s) that are precursors for four nonstructural proteins (nsPs). The three-dimensional structures of nsP2 and the N-terminal 2/3 of nsP3 reveal that these proteins consist of several domains. Cleavage of the ns-polyprotein is performed by the strictly regulated protease activity of the nsP2 region. Processing results in the formation of a replicase complex that can be considered a network of functional modules. These modules work cooperatively and should perform the same task for each alphavirus. To investigate functional interactions between replicase components, we generated chimeras using the SFV genome as a backbone. The functional modules corresponding to different parts of nsP2 and nsP3 were swapped with their counterparts from CHIKV and SINV. Although some chimeras were nonfunctional, viruses harboring the CHIKV N-terminal domain of nsP2 or any domain of nsP3 were viable. Viruses harboring the protease part of nsP2, the full-length nsP2 of CHIKV, or the nsP3 macrodomain of SINV required adaptive mutations for functionality. Seven mutations that considerably improved the infectivity of the corresponding chimeric genomes affected functionally important hot spots recurrently highlighted in previous alphavirus studies. These data indicate that alphaviruses utilize a rather limited set of strategies to survive and adapt. Furthermore, functional analysis revealed that the disturbance of processing was the main defect resulting from chimeric alterations within the ns-polyprotein. IMPORTANCE Alphaviruses cause debilitating symptoms and have caused massive outbreaks. There are currently no approved antivirals or vaccines for treating these infections. Understanding the functions of alphavirus replicase proteins (nsPs) provides valuable information for both antiviral drug and vaccine development. The nsPs of all alphaviruses consist of similar functional modules; however, to what extent these are independent in functionality and thus interchangeable among homologous viruses is largely unknown. Homologous domain swapping was used to study the functioning of modules from nsP2 and nsP3 of other alphaviruses in the context of Semliki Forest virus. Most of the introduced substitutions resulted in defects in the processing of replicase precursors that were typically compensated by adaptive mutations that mapped to determinants of polyprotein processing. Understanding the principles of virus survival strategies and identifying hot spot mutations that permit virus adaptation highlight a route to the rapid development of attenuated viruses as potential live vaccine candidates.


Assuntos
Adaptação Biológica/genética , Alphavirus/genética , Vírus da Floresta de Semliki/genética , Linhagem Celular , Vírus Chikungunya/genética , Quimera/genética , Quimera/metabolismo , Vírus de DNA/genética , Humanos , Mutação/genética , Poliproteínas/metabolismo , RNA Viral/metabolismo , Sindbis virus/genética , Proteínas não Estruturais Virais/genética , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/genética
5.
J Virol ; 95(14): e0066321, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33963053

RESUMO

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.


Assuntos
COVID-19 , Genoma Viral , Motivos de Nucleotídeos , Dobramento de RNA , RNA Viral , SARS-CoV-2/fisiologia , Replicação Viral , Animais , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Células Vero
6.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29695431

RESUMO

Polyprotein processing has an important regulatory role in the life cycle of positive-strand RNA viruses. In the case of alphaviruses, sequential cleavage of the nonstructural polyprotein (ns-polyprotein) at three sites eventually yields four mature nonstructural proteins (nsPs) that continue working in complex to replicate viral genomic RNA and transcribe subgenomic RNA. Recognition of cleavage sites by viral nsP2 protease is guided by short sequences upstream of the scissile bond and, more importantly, by the spatial organization of the replication complex. In this study, we analyzed the consequences of the artificially accelerated processing of the Semliki Forest virus ns-polyprotein. It was found that in mammalian cells, not only the order but also the correct timing of the cleavage events is essential for the success of viral replication. Analysis of the effects of compensatory mutations in rescued viruses as well as in vitro translation and trans-replicase assays corroborated our findings and revealed the importance of the V515 residue in nsP2 for recognizing the P4 position in the nsP1/nsP2 cleavage site. We also extended our conclusions to Sindbis virus by analyzing the properties of the hyperprocessive variant carrying the N614D mutation in nsP2. We conclude that the sequence of the nsP1/nsP2 site in alphaviruses is under selective pressure to avoid the presence of sequences that are recognized too efficiently and would otherwise lead to premature cleavage at this site before completion of essential tasks of RNA synthesis or virus-induced replication complex formation. Even subtle changes in the ns-polyprotein processing pattern appear to lead to virus attenuation.IMPORTANCE The polyprotein expression strategy is a cornerstone of alphavirus replication. Three sites within the ns-polyprotein are recognized by the viral nsP2 protease and cleaved in a defined order. Specific substrate targeting is achieved by the recognition of the short sequence upstream of the scissile bond and a correct macromolecular assembly of ns-polyprotein. Here, we highlighted the importance of the timeliness of proteolytic events, as an additional layer of regulation of efficient virus replication. We conclude that, somewhat counterintuitively, the cleavage site sequences at the nsP1/nsP2 and nsP2/nsP3 junctions are evolutionarily selected to be recognized by protease inefficiently, to avoid premature cleavages that would be detrimental for the assembly and functionality of the replication complex. Understanding the causes and consequences of viral polyprotein processing events is important for predicting the properties of mutant viruses and should be helpful for the development of better vaccine candidates and understanding potential mechanisms of resistance to protease inhibitors.


Assuntos
Infecções por Alphavirus/virologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteólise , Vírus da Floresta de Semliki/fisiologia , Proteínas não Estruturais Virais/metabolismo , Infecções por Alphavirus/metabolismo , Células Cultivadas , Genoma Viral , Rim/virologia , Mutação , RNA Viral , Proteínas não Estruturais Virais/genética , Replicação Viral
7.
J Virol ; 90(4): 2008-20, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656680

RESUMO

UNLABELLED: Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, for which no safe and efficient vaccines or therapeutic means have been developed. Viral particle assembly and budding processes represent potential targets for therapeutic intervention. However, our understanding of the mechanistic process of VEEV assembly, RNA encapsidation, and the roles of different capsid-specific domains in these events remain to be described. The results of this new study demonstrate that the very amino-terminal VEEV capsid-specific subdomain SD1 is a critical player in the particle assembly process. It functions in a virus-specific mode, and its deletion, mutation, or replacement by the same subdomain derived from other alphaviruses has strong negative effects on infectious virus release. VEEV variants with mutated SD1 accumulate adaptive mutations in both SD1 and SD2, which result in a more efficiently replicating phenotype. Moreover, efficient nucleocapsid and particle assembly proceeds only when the two subdomains, SD1 and SD2, are derived from the same alphavirus. These two subdomains together appear to form the central core of VEEV nucleocapsids, and their interaction is one of the driving forces of virion assembly and budding. The similar domain structures of alphavirus capsid proteins suggest that this new knowledge can be applied to other alphaviruses. IMPORTANCE: Alphaviruses are a group of human and animal pathogens which cause periodic outbreaks of highly debilitating diseases. Despite significant progress made in understanding the overall structure of alphavirus and VEEV virions, and glycoprotein spikes in particular, the mechanistic process of nucleocapsid assembly, RNA encapsidation, and the roles of different capsid-specific domains in these processes remain to be described. Our new data demonstrate that the very amino-terminal subdomain of Venezuelan equine encephalitis virus capsid protein, SD1, plays a critical role in the nucleocapsid assembly. It functions synergistically with the following SD2 (helix I) and appears to form a core in the center of nucleocapsid. The core formation is one of the driving forces of alphavirus particle assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Encefalite Equina Venezuelana/fisiologia , Nucleocapsídeo/metabolismo , Vírion/metabolismo , Montagem de Vírus , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Cricetinae , Análise Mutacional de DNA , Vírus da Encefalite Equina Venezuelana/genética , Vírus da Encefalite Equina Venezuelana/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ensaio de Placa Viral , Vírion/ultraestrutura
8.
J Virol ; 90(16): 7405-7414, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279609

RESUMO

UNLABELLED: African horse sickness virus (AHSV), an orbivirus in the Reoviridae family with nine different serotypes, causes devastating disease in equids. The virion particle is composed of seven proteins organized in three concentric layers, an outer layer made of VP2 and VP5, a middle layer made of VP7, and inner layer made of VP3 that encloses a replicase complex of VP1, VP4, and VP6 and a genome of 10 double-stranded RNA segments. In this study, we sought to develop highly efficacious candidate vaccines against all AHSV serotypes, taking into account not only immunogenic and safety properties but also virus productivity and stability parameters, which are essential criteria for vaccine candidates. To achieve this goal, we first established a highly efficient reverse genetics (RG) system for AHSV serotype 1 (AHSV1) and, subsequently, a VP6-defective AHSV1 strain in combination with in trans complementation of VP6. This was then used to generate defective particles of all nine serotypes, which required the exchange of two to five RNA segments to achieve equivalent titers of particles. All reassortant-defective viruses could be amplified and propagated to high titers in cells complemented with VP6 but were totally incompetent in any other cells. Furthermore, these replication-incompetent AHSV particles were demonstrated to be highly protective against homologous virulent virus challenges in type I interferon receptor (IFNAR)-knockout mice. Thus, these defective viruses have the potential to be used for the development of safe and stable vaccine candidates. The RG system also provides a powerful tool for the study of the role of individual AHSV proteins in virus assembly, morphogenesis, and pathogenesis. IMPORTANCE: African horse sickness virus is transmitted by biting midges and causes African horse sickness in equids, with mortality reaching up to 95% in naive horses. Therefore, the development of efficient vaccines is extremely important due to major economic losses in the equine industry. Through the establishment of a highly efficient RG system, replication-deficient viruses of all nine AHSV serotypes were generated. These defective viruses achieved high titers in a cell line complemented with VP6 but failed to propagate in wild-type mammalian or insect cells. Importantly, these candidate vaccine strains showed strong protective efficacy against AHSV infection in an IFNAR(-/-) mouse model.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Vírus Defeituosos/imunologia , Vacinas Virais/metabolismo , Vírion/metabolismo , Montagem de Vírus , Replicação Viral , Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/fisiologia , Animais , Vírus Defeituosos/genética , Vírus Defeituosos/fisiologia , Modelos Animais de Doenças , Deleção de Genes , Camundongos , Camundongos Knockout , Genética Reversa , Sorogrupo , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
9.
J Virol ; 89(6): 3145-62, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25552719

RESUMO

UNLABELLED: Chikungunya virus (CHIKV) (genus Alphavirus) has a positive-sense RNA genome. CHIKV nonstructural protein 2 (nsP2) proteolytically processes the viral nonstructural polyprotein, possesses nucleoside triphosphatase (NTPase), RNA triphosphatase, and RNA helicase activities, and induces cytopathic effects in vertebrate cells. Although alphaviral nsP2 mutations can result in a noncytotoxic phenotype, the effects of such mutations on nsP2 enzymatic activities are not well understood. In this study, we introduced a P718G (PG) mutation and selected for additional mutations in CHIKV nsP2 that resulted in a CHIKV replicon with a noncytotoxic phenotype in BHK-21 cells. Combinations of PG and either an E117K (EK) substitution or a GEEGS sequence insertion after residue T647 (5A) markedly reduced RNA synthesis; however, neither PG nor 5A prevented nsP2 nuclear translocation. Introducing PG into recombinant nsP2 inhibited proteolytic cleavage of nsP1/nsP2 and nsP3/nsP4 sites, reduced GTPase and RNA helicase activities, and abolished RNA stimulation of GTPase activity. 5A and EK modulated the effects of PG. However, only the RNA helicase activity of nsP2 was reduced by both of these mutations, suggesting that defects in this activity may be linked to a noncytotoxic phenotype. These results increase our understanding of the molecular basis for the cytotoxicity that accompanies alphaviral replication. Furthermore, adaptation of the CHIKV replicon containing both 5A and PG allowed the selection of a CHIKV replicon with adaptive mutations in nsP1 and nsP3 that enable persistence in human cell line. Such cell lines represent valuable experimental systems for discovering host factors and for screening inhibitors of CHIKV replication at lower biosafety levels. IMPORTANCE: CHIKV is a medically important pathogen that causes febrile illness and can cause chronic arthritis. No approved vaccines or antivirals are available for CHIKV. The attenuation of CHIKV is critical to the establishment of experimental systems that can be used to conduct virus replication studies at a lower biosafety level. We applied a functional selection approach to develop, for the first time, a noncytotoxic CHIKV replicon capable of persisting in human cell lines. We anticipate that this safe and efficient research tool will be valuable for screening CHIKV replication inhibitors and for identifying and analyzing host factors involved in viral replication. We also analyzed, from virological and protein biochemistry perspectives, the functional defects caused by mutations conferring noncytotoxic phenotypes; we found that all known enzymatic activities of CHIKV nsP2, as well as its RNA-binding capability, were compromised by these mutations, which led to a reduced capacity for replication.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Vírus Chikungunya/enzimologia , Mutação de Sentido Incorreto , RNA Helicases/metabolismo , Replicon , Proteínas não Estruturais Virais/metabolismo , Hidrolases Anidrido Ácido/genética , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Humanos , Fenótipo , RNA Helicases/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
10.
J Virol ; 88(22): 13333-43, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210177

RESUMO

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that causes debilitating arthralgia in humans. Here we describe the development and testing of novel DNA replicon and protein CHIKV vaccine candidates and evaluate their abilities to induce antigen-specific immune responses against CHIKV. We also describe homologous and heterologous prime-boost immunization strategies using novel and previously developed CHIKV vaccine candidates. Immunogenicity and efficacy were studied in a mouse model of CHIKV infection and showed that the DNA replicon and protein antigen were potent vaccine candidates, particularly when used for priming and boosting, respectively. Several prime-boost immunization strategies eliciting unmatched humoral and cellular immune responses were identified. Further characterization by antibody epitope mapping revealed differences in the qualitative immune responses induced by the different vaccine candidates and immunization strategies. Most vaccine modalities resulted in complete protection against wild-type CHIKV infection; however, we did identify circumstances under which certain immunization regimens may lead to enhancement of inflammation upon challenge. These results should help guide the design of CHIKV vaccine studies and will form the basis for further preclinical and clinical evaluation of these vaccine candidates. IMPORTANCE: As of today, there is no licensed vaccine to prevent CHIKV infection. In considering potential new vaccine candidates, a vaccine that could raise long-term protective immunity after a single immunization would be preferable. While humoral immunity seems to be central for protection against CHIKV infection, we do not yet fully understand the correlates of protection. Therefore, in the absence of a functional vaccine, there is a need to evaluate a number of different candidates, assessing their merits when they are used either in a single immunization or in a homologous or heterologous prime-boost modality. Here we show that while single immunization with various vaccine candidates results in potent responses, combined approaches significantly enhance responses, suggesting that such approaches need to be considered in the further development of an efficacious CHIKV vaccine.


Assuntos
Febre de Chikungunya/prevenção & controle , Vírus Chikungunya/imunologia , Imunização/métodos , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Febre de Chikungunya/imunologia , Modelos Animais de Doenças , Feminino , Leucócitos Mononucleares/imunologia , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem
11.
J Virol ; 88(5): 2858-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371047

RESUMO

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that has caused severe epidemics in Africa and Asia and occasionally in Europe. As of today, there is no licensed vaccine available to prevent CHIKV infection. Here we describe the development and evaluation of novel CHIKV vaccine candidates that were attenuated by deleting a large part of the gene encoding nsP3 or the entire gene encoding 6K and were administered as viral particles or infectious genomes launched by DNA. The resulting attenuated mutants were genetically stable and elicited high magnitudes of binding and neutralizing antibodies as well as strong T cell responses after a single immunization in C57BL/6 mice. Subsequent challenge with a high dose of CHIKV demonstrated that the induced antibody responses protected the animals from viremia and joint swelling. The protective antibody response was long-lived, and a second homologous immunization further enhanced immune responses. In summary, this report demonstrates a straightforward means of constructing stable and efficient attenuated CHIKV vaccine candidates that can be administered either as viral particles or as infectious genomes launched by DNA. IMPORTANCE: Similar to other infectious diseases, the best means of preventing CHIKV infection would be by vaccination using an attenuated vaccine platform which preferably raises protective immunity after a single immunization. However, the attenuated CHIKV vaccine candidates developed to date rely on a small number of attenuating point mutations and are at risk of being unstable or even sensitive to reversion. We report here the construction and preclinical evaluation of novel CHIKV vaccine candidates that have been attenuated by introducing large deletions. The resulting mutants proved to be genetically stable, attenuated, highly immunogenic, and able to confer durable immunity after a single immunization. Moreover, these mutants can be administered either as viral particles or as DNA-launched infectious genomes, enabling evaluation of the most feasible vaccine modality for a certain setting. These CHIKV mutants could represent stable and efficient vaccine candidates against CHIKV.


Assuntos
Infecções por Alphavirus/imunologia , Vírus Chikungunya/imunologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Febre de Chikungunya , Vírus Chikungunya/genética , Feminino , Ordem dos Genes , Genoma Viral , Imunidade Celular , Imunização , Imunização Secundária , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
12.
PLoS Pathog ; 9(9): e1003610, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039580

RESUMO

Type I interferons (IFN) are important for antiviral responses. Melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-induced gene I (RIG-I) proteins detect cytosolic double-stranded RNA (dsRNA) or 5'-triphosphate (5'-ppp) RNA and mediate IFN production. Cytosolic 5'-ppp RNA and dsRNA are generated during viral RNA replication and transcription by viral RNA replicases [RNA-dependent RNA polymerases (RdRp)]. Here, we show that the Semliki Forest virus (SFV) RNA replicase can induce IFN-ß independently of viral RNA replication and transcription. The SFV replicase converts host cell RNA into 5'-ppp dsRNA and induces IFN-ß through the RIG-I and MDA-5 pathways. Inactivation of the SFV replicase RdRp activity prevents IFN-ß induction. These IFN-inducing modified host cell RNAs are abundantly produced during both wild-type SFV and its non-pathogenic mutant infection. Furthermore, in contrast to the wild-type SFV replicase a non-pathogenic mutant replicase triggers increased IFN-ß production, which leads to a shutdown of virus replication. These results suggest that host cells can restrict RNA virus replication by detecting the products of unspecific viral replicase RdRp activity.


Assuntos
Infecções por Alphavirus/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA de Cadeia Dupla/biossíntese , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Vírus da Floresta de Semliki/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Infecções por Alphavirus/genética , Animais , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Humanos , Helicase IFIH1 Induzida por Interferon , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Receptores Imunológicos , Proteínas Virais/genética
13.
J Immunol ; 190(1): 259-69, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23209328

RESUMO

Chikungunya virus (CHIKV) is an alphavirus that causes chronic and incapacitating arthralgia in humans. Injury to the joint is believed to occur because of viral and host immune-mediated effects. However, the exact involvement of the different immune mediators in CHIKV-induced pathogenesis is unknown. In this study, we assessed the roles of T cells in primary CHIKV infection, virus replication and dissemination, and virus persistence, as well as in the mediation of disease severity in adult RAG2(-/-), CD4(-/-), CD8(-/-), and wild-type CHIKV C57BL/6J mice and in wild-type mice depleted of CD4(+) or CD8(+) T cells after Ab treatment. CHIKV-specific T cells in the spleen and footpad were investigated using IFN-γ ELISPOT. Interestingly, our results indicated that CHIKV-specific CD4(+), but not CD8(+), T cells are essential for the development of joint swelling without any effect on virus replication and dissemination. Infection in IFN-γ(-/-) mice demonstrated that pathogenic CD4(+) T cells do not mediate inflammation via an IFN-γ-mediated pathway. Taken together, these observations strongly indicate that mechanisms of joint pathology induced by CHIKV in mice resemble those in humans and differ from infections caused by other arthritogenic viruses, such as Ross River virus.


Assuntos
Infecções por Alphavirus/imunologia , Infecções por Alphavirus/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Vírus Chikungunya/imunologia , Imunidade Adaptativa/genética , Infecções por Alphavirus/genética , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/virologia , Antígenos CD4/genética , Linfócitos T CD4-Positivos/patologia , Movimento Celular/genética , Movimento Celular/imunologia , Febre de Chikungunya , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Interferon gama/deficiência , Interferon gama/genética , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Vero
14.
J Virol ; 87(22): 12003-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006447

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a pathogenic alphavirus, which circulates in the Central, South, and North Americas, including the United States, and represents a significant public health threat. In recent years, strong progress has been made in understanding the structure of VEEV virions, but the mechanism of their formation has yet to be investigated. In this study, we analyzed the functions of different capsid-specific domains and its amino-terminal subdomains in viral particle formation. Our data demonstrate that VEEV particles can be efficiently formed directly at the plasma membrane without cytoplasmic nucleocapsid preassembly. The entire amino-terminal domain of VEEV capsid protein was found to be dispensable for particle formation. VEEV variants encoding only the capsid's protease domain efficiently produce genome-free VEEV virus-like particles (VLPs), which are very similar in structure to the wild-type virions. The amino-terminal domain of the VEEV capsid protein contains at least four structurally and functionally distinct subdomains, which mediate RNA packaging and the specificity of packaging in particular. The most positively charged subdomain is a negative regulator of the nucleocapsid assembly. The three other subdomains are not required for genome-free VLP formation but are important regulators of RNA packaging. Our data suggest that the positively charged surface of the VEEV capsid-specific protease domain and the very amino-terminal subdomain are also involved in interaction with viral RNA and play important roles in RNA encapsidation. Finally, we show that VEEV variants with mutated capsid acquire compensatory mutations in either capsid or nsP2 genes.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Encefalite Equina Venezuelana/fisiologia , Encefalomielite Equina Venezuelana/metabolismo , Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus , Sequência de Aminoácidos , Animais , Western Blotting , Proteínas do Capsídeo/genética , Proliferação de Células , Células Cultivadas , Encefalomielite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/virologia , Genoma Viral , Rim/citologia , Rim/metabolismo , Rim/virologia , Dados de Sequência Molecular , Mutação/genética , Nucleocapsídeo/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Vírion/genética , Replicação Viral
15.
J Virol ; 87(18): 10207-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864614

RESUMO

Semliki Forest virus (genus Alphavirus) is an important model for studying regulated nonstructural (ns) polyprotein processing. In this study, we evaluated the strictness of the previously outlined cleavage rules, accounting for the timing and outcome of each of three cleavages within the ns polyprotein P1234, and assessed the significance of residues P6 to P4 within the cleavage sites using an alanine scanning approach. The processing of the 1/2 and 3/4 sites was most strongly affected following changes in residues P5 and P4, respectively. However, none of the mutations had a detectable effect on the processing of the 2/3 site. An analysis of recombinant viruses bearing combinations of mutations in cleavage sites revealed tolerance toward the cooccurrence of native and mutated cleavage sites within the same polyprotein, suggesting a remarkable plasticity of the protease recognition pocket. Even in a virus in which all of the cleavage sequences were replaced with alanines in the P6, P5, and P4 positions, the processing pattern was largely preserved, without leading to reversion of cleavage site mutations. Instead, the emergence of second-site mutations was identified, among which Q706R/L in nsP2 was confirmed to be associated with the recognition of the P4 position within the modified cleavage sites. Our results imply that the spatial arrangement of the viral replication complex inherently contributes to scissile-site presentation for the protease, alleviating stringent sequence recognition requirements yet ensuring the precision and the correct order of processing events. Obtaining a proper understanding of the consequences of cleavage site manipulations may provide new tools for taming alphaviruses.


Assuntos
Peptídeo Hidrolases/metabolismo , Poliproteínas/metabolismo , Vírus da Floresta de Semliki/enzimologia , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Análise Mutacional de DNA , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/genética , Proteólise , Vírus da Floresta de Semliki/genética , Especificidade por Substrato
16.
J Virol ; 86(1): 553-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031949

RESUMO

Semliki Forest virus (SFV) is a member of the Alphavirus genus, which produces its replicase proteins in the form of a nonstructural (ns) polyprotein precursor P1234. The maturation of the replicase occurs in a temporally controlled manner by protease activity of nsP2. The template preference and enzymatic capabilities of the alphaviral replication complex have a very important connection with its composition, which is irreversibly altered by proteolysis. The final cleavage of the 2/3 site in the ns polyprotein apparently leads to significant rearrangements within the replication complex and thus denotes the "point of no return" for viral replication progression. Numerous studies have devised rules for when and how ns protease acts, but how the alphaviral 2/3 site is recognized remained largely unexplained. In contrast to the other two cleavage sites within the ns polyprotein, the 2/3 site evidently lacks primary sequence elements in the vicinity of the scissile bond sufficient for specific protease recognition. In this study, we sought to investigate the molecular details of the regulation of the 2/3 site processing in the SFV ns polyprotein. We present evidence that correct macromolecular assembly, presumably strengthened by exosite interactions rather than the functionality of the individual nsP2 protease, is the driving force for specific substrate targeting. We conclude that structural elements within the macrodomain of nsP3 are used for precise positioning of a substrate recognition sequence at the catalytic center of the protease and that this process is coordinated by the exact N-terminal end of nsP2, thus representing a unique regulation mechanism used by alphaviruses.


Assuntos
Poliproteínas/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vírus da Floresta de Semliki/enzimologia , Proteínas Virais/metabolismo , Infecções por Alphavirus/virologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Cricetinae , Dados de Sequência Molecular , Poliproteínas/química , Poliproteínas/genética , Processamento de Proteína Pós-Traducional , Proteólise , RNA Polimerase Dependente de RNA/genética , Vírus da Floresta de Semliki/química , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/fisiologia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral
17.
Virol J ; 10: 235, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23855906

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) has been responsible for large epidemic outbreaks causing fever, headache, rash and severe arthralgia. So far, no specific treatment or vaccine is available. As nucleic acid amplification can only be used during the viremic phase of the disease, serological tests like neutralization assays are necessary for CHIKV diagnosis and for determination of the immune status of a patient. Furthermore, neutralization assays represent a useful tool to validate the efficacy of potential vaccines. As CHIKV is a BSL3 agent, neutralization assays with infectious virus need to be performed under BSL3 conditions. Our aim was to develop a neutralization assay based on non-infectious virus replicon particles (VRPs). METHODS: VRPs were produced by cotransfecting baby hamster kidney-21 cells with a CHIKV replicon expressing Gaussia luciferase (Gluc) and two helper RNAs expressing the CHIKV capsid protein or the remaining structural proteins, respectively. The resulting single round infectious particles were used in CHIKV neutralization assays using secreted Gluc as readout. RESULTS: Upon cotransfection of a CHIKV replicon expressing Gluc and the helper RNAs VRPs could be produced efficiently under optimized conditions at 32°C. Infection with VRPs could be measured via Gluc secreted into the supernatant. The successful use of VRPs in CHIKV neutralization assays was demonstrated using a CHIKV neutralizing monoclonal antibody or sera from CHIKV infected patients. Comparison of VRP based neutralization assays in 24- versus 96-well format using different amounts of VRPs revealed that in the 96-well format a high multiplicity of infection is favored, while in the 24-well format reliable results are also obtained using lower infection rates. Comparison of different readout times revealed that evaluation of the neutralization assay is already possible at the same day of infection. CONCLUSIONS: A VRP based CHIKV neutralization assay using Gluc as readout represents a fast and useful method to determine CHIKV neutralizing antibodies without the need of using infectious CHIKV.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus Chikungunya/imunologia , Luciferases/análise , Testes de Neutralização/métodos , Animais , Linhagem Celular , Vírus Chikungunya/genética , Cricetinae , Genes Reporter , Humanos , Luciferases/genética , Fatores de Tempo
18.
iScience ; 26(11): 108080, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37860693

RESUMO

The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localizes to mitochondria, where it inhibits innate immunity by restricting IFN-ß production, but not NF-κB activation or JAK-STAT signaling downstream of type I IFN stimulation. We find that ORF3c is inhibitory after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterized mechanism of innate immune evasion by this important human pathogen.

20.
bioRxiv ; 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35547847

RESUMO

The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro , or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA