Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(8): 849-858, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013148

RESUMO

How cells respond to myriad stimuli with finite signaling machinery is central to immunology. In naive T cells, the inherent effect of ligand strength on activation pathways and endpoints has remained controversial, confounded by environmental fluctuations and intercellular variability within populations. Here we studied how ligand potency affected the activation of CD8+ T cells in vitro, through the use of genome-wide RNA, multi-dimensional protein and functional measurements in single cells. Our data revealed that strong ligands drove more efficient and uniform activation than did weak ligands, but all activated cells were fully cytolytic. Notably, activation followed the same transcriptional pathways regardless of ligand potency. Thus, stimulation strength did not intrinsically dictate the T cell-activation route or phenotype; instead, it controlled how rapidly and simultaneously the cells initiated activation, allowing limited machinery to elicit wide-ranging responses.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Citotoxicidade Imunológica , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Animais , Linhagem Celular , Genoma , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética , Transdução de Sinais , Análise de Célula Única
2.
Nat Immunol ; 19(11): 1257-1264, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323344

RESUMO

Recent studies have elucidated cell-lineage-specific three-dimensional genome organization; however, how such specific architecture is established or maintained is unclear. We hypothesized that lineage-defining transcription factors maintain cell identity via global control of genome organization. These factors bind many genomic sites outside of the genes that they directly regulate and thus are potentially implicated in three-dimensional genome organization. Using chromosome-conformation-capture techniques, we show that the transcription factor Paired box 5 (Pax5) is critical for the establishment and maintenance of the global lineage-specific architecture of B cells. Pax5 was found to supervise genome architecture throughout B cell differentiation, until the plasmablast stage, in which Pax5 is naturally silenced and B cell-specific genome structure is lost. Crucially, Pax5 did not rely on ongoing transcription to organize the genome. These results implicate sequence-specific DNA-binding proteins in global genome organization to establish and maintain lineage fidelity.


Assuntos
Linfócitos B/citologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Fator de Transcrição PAX5/genética , Animais , Linfócitos B/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição PAX5/metabolismo
4.
Nat Methods ; 17(2): 137-145, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792435

RESUMO

Recent technological advancements have enabled the profiling of a large number of genome-wide features in individual cells. However, single-cell data present unique challenges that require the development of specialized methods and software infrastructure to successfully derive biological insights. The Bioconductor project has rapidly grown to meet these demands, hosting community-developed open-source software distributed as R packages. Featuring state-of-the-art computational methods, standardized data infrastructure and interactive data visualization tools, we present an overview and online book (https://osca.bioconductor.org) of single-cell methods for prospective users.


Assuntos
Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Software
5.
Bioinformatics ; 38(11): 3128-3131, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35482478

RESUMO

SUMMARY: SpatialExperiment is a new data infrastructure for storing and accessing spatially-resolved transcriptomics data, implemented within the R/Bioconductor framework, which provides advantages of modularity, interoperability, standardized operations and comprehensive documentation. Here, we demonstrate the structure and user interface with examples from the 10x Genomics Visium and seqFISH platforms, and provide access to example datasets and visualization tools in the STexampleData, TENxVisiumData and ggspavis packages. AVAILABILITY AND IMPLEMENTATION: The SpatialExperiment, STexampleData, TENxVisiumData and ggspavis packages are available from Bioconductor. The package versions described in this manuscript are available in Bioconductor version 3.15 onwards. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Transcriptoma , Genômica
6.
Nat Methods ; 15(10): 785-788, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202058

RESUMO

The structural flexibility of RNA underlies fundamental biological processes, but there are no methods for exploring the multiple conformations adopted by RNAs in vivo. We developed cross-linking of matched RNAs and deep sequencing (COMRADES) for in-depth RNA conformation capture, and a pipeline for the retrieval of RNA structural ensembles. Using COMRADES, we determined the architecture of the Zika virus RNA genome inside cells, and identified multiple site-specific interactions with human noncoding RNAs.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Humanos , Proteínas de Ligação a RNA/química , Análise de Sequência de RNA/métodos , Transcriptoma , Zika virus/isolamento & purificação , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
7.
PLoS Genet ; 14(6): e1007431, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29883495

RESUMO

It has been proposed that interactions between mammalian chromosomes, or transchromosomal interactions (also known as kissing chromosomes), regulate gene expression and cell fate determination. Here we aimed to identify novel transchromosomal interactions in immune cells by high-resolution genome-wide chromosome conformation capture. Although we readily identified stable interactions in cis, and also between centromeres and telomeres on different chromosomes, surprisingly we identified no gene regulatory transchromosomal interactions in either mouse or human cells, including previously described interactions. We suggest that advances in the chromosome conformation capture technique and the unbiased nature of this approach allow more reliable capture of interactions between chromosomes than previous methods. Overall our findings suggest that stable transchromosomal interactions that regulate gene expression are not present in mammalian immune cells and that lineage identity is governed by cis, not trans chromosomal interactions.


Assuntos
Cromossomos de Mamíferos/genética , Regulação da Expressão Gênica , Imunidade Celular/genética , Mamíferos/fisiologia , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromossomos de Mamíferos/química , Cromossomos de Mamíferos/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Citometria de Fluxo , Genoma , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação de Ácido Nucleico , Estereoisomerismo
8.
Genome Res ; 27(11): 1795-1806, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29030468

RESUMO

By profiling the transcriptomes of individual cells, single-cell RNA sequencing provides unparalleled resolution to study cellular heterogeneity. However, this comes at the cost of high technical noise, including cell-specific biases in capture efficiency and library generation. One strategy for removing these biases is to add a constant amount of spike-in RNA to each cell and to scale the observed expression values so that the coverage of spike-in transcripts is constant across cells. This approach has previously been criticized as its accuracy depends on the precise addition of spike-in RNA to each sample. Here, we perform mixture experiments using two different sets of spike-in RNA to quantify the variance in the amount of spike-in RNA added to each well in a plate-based protocol. We also obtain an upper bound on the variance due to differences in behavior between the two spike-in sets. We demonstrate that both factors are small contributors to the total technical variance and have only minor effects on downstream analyses, such as detection of highly variable genes and clustering. Our results suggest that scaling normalization using spike-in transcripts is reliable enough for routine use in single-cell RNA sequencing data analyses.


Assuntos
Análise de Sequência de RNA/normas , Análise de Célula Única/normas , Algoritmos , Animais , Linhagem Celular , Perfilação da Expressão Gênica/normas , Regulação da Expressão Gênica , Camundongos , Reprodutibilidade dos Testes
9.
Nat Methods ; 14(7): 707-709, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28504682

RESUMO

When comparing biological conditions using mass cytometry data, a key challenge is to identify cellular populations that change in abundance. Here, we present a computational strategy for detecting 'differentially abundant' populations by assigning cells to hyperspheres, testing for significant differences between conditions and controlling the spatial false discovery rate. Our method (http://bioconductor.org/packages/cydar) outperforms other approaches in simulations and finds novel patterns of differential abundance in real data.


Assuntos
Citometria de Fluxo/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Simulação por Computador
10.
Nucleic Acids Res ; 46(12): 5950-5966, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29860520

RESUMO

Loss-of-function (LOF) methods such as RNA interference (RNAi), antisense oligonucleotides or CRISPR-based genome editing provide unparalleled power for studying the biological function of genes of interest. However, a major concern is non-specific targeting, which involves depletion of transcripts other than those intended. Little work has been performed to characterize the off-target effects of these common LOF methods at the whole-transcriptome level. Here, we experimentally compared the non-specific activity of RNAi, antisense oligonucleotides and CRISPR interference (CRISPRi). All three methods yielded non-negligible off-target effects in gene expression, with CRISPRi also exhibiting strong clonal effects. As an illustrative example, we evaluated the performance of each method for determining the role of an uncharacterized long noncoding RNA (lncRNA). Several LOF methods successfully depleted the candidate lncRNA but yielded different sets of differentially expressed genes as well as a different cellular phenotype upon depletion. Similar discrepancies between methods were observed with a protein-coding gene (Ch-TOG/CKAP5) and another lncRNA (MALAT1). We suggest that the differences between methods arise due to method-specific off-target effects and provide guidelines for mitigating such effects in functional studies. Our recommendations provide a framework with which off-target effects can be managed to improve functional characterization of genes of interest.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes , Oligonucleotídeos Antissenso , Oligonucleotídeos , Interferência de RNA , Transcrição Gênica , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Oligonucleotídeos Antissenso/química , Proteínas/genética , RNA Longo não Codificante/metabolismo
11.
Genome Res ; 26(6): 719-31, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053337

RESUMO

A three-dimensional chromatin state underpins the structural and functional basis of the genome by bringing regulatory elements and genes into close spatial proximity to ensure proper, cell-type-specific gene expression profiles. Here, we performed Hi-C chromosome conformation capture sequencing to investigate how three-dimensional chromatin organization is disrupted in the context of copy-number variation, long-range epigenetic remodeling, and atypical gene expression programs in prostate cancer. We find that cancer cells retain the ability to segment their genomes into megabase-sized topologically associated domains (TADs); however, these domains are generally smaller due to establishment of additional domain boundaries. Interestingly, a large proportion of the new cancer-specific domain boundaries occur at regions that display copy-number variation. Notably, a common deletion on 17p13.1 in prostate cancer spanning the TP53 tumor suppressor locus results in bifurcation of a single TAD into two distinct smaller TADs. Change in domain structure is also accompanied by novel cancer-specific chromatin interactions within the TADs that are enriched at regulatory elements such as enhancers, promoters, and insulators, and associated with alterations in gene expression. We also show that differential chromatin interactions across regulatory regions occur within long-range epigenetically activated or silenced regions of concordant gene activation or repression in prostate cancer. Finally, we present a novel visualization tool that enables integrated exploration of Hi-C interaction data, the transcriptome, and epigenome. This study provides new insights into the relationship between long-range epigenetic and genomic dysregulation and changes in higher-order chromatin interactions in cancer.


Assuntos
Cromatina/genética , Epigênese Genética , Neoplasias/genética , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Neoplasias/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/fisiologia
12.
PLoS Comput Biol ; 14(5): e1006135, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29723188

RESUMO

Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Software , Algoritmos , Bases de Dados Genéticas , Humanos
13.
Development ; 142(8): 1458-69, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25790853

RESUMO

Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality. We show that Ezh2 is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in Ezh2 conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in Ezh2-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of Ezh2-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of Ezh2. We found that loss of Ezh2 de-represses insulin-like growth factor 1 (Igf1) expression and that modulation of IGF1 signaling ex vivo in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for Ezh2 in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of Igf1 expression.


Assuntos
Diferenciação Celular/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Diferenciação Celular/genética , Imunoprecipitação da Cromatina , Proteína Potenciadora do Homólogo 2 de Zeste , Citometria de Fluxo , Fator de Crescimento Insulin-Like I/genética , Queratina-5/genética , Queratina-5/metabolismo , Pulmão/embriologia , Camundongos , Complexo Repressor Polycomb 2/genética , Reação em Cadeia da Polimerase
14.
Biostatistics ; 18(3): 451-464, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334062

RESUMO

An increasing number of studies are using single-cell RNA-sequencing (scRNA-seq) to characterize the gene expression profiles of individual cells. One common analysis applied to scRNA-seq data involves detecting differentially expressed (DE) genes between cells in different biological groups. However, many experiments are designed such that the cells to be compared are processed in separate plates or chips, meaning that the groupings are confounded with systematic plate effects. This confounding aspect is frequently ignored in DE analyses of scRNA-seq data. In this article, we demonstrate that failing to consider plate effects in the statistical model results in loss of type I error control. A solution is proposed whereby counts are summed from all cells in each plate and the count sums for all plates are used in the DE analysis. This restores type I error control in the presence of plate effects without compromising detection power in simulated data. Summation is also robust to varying numbers and library sizes of cells on each plate. Similar results are observed in DE analyses of real data where the use of count sums instead of single-cell counts improves specificity and the ranking of relevant genes. This suggests that summation can assist in maintaining statistical rigour in DE analyses of scRNA-seq data with plate effects.


Assuntos
Perfilação da Expressão Gênica , Modelos Estatísticos , Análise de Sequência de RNA , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA , Análise de Célula Única , Software , Transcriptoma
15.
Bioinformatics ; 33(8): 1179-1186, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28088763

RESUMO

Motivation: Single-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression at the level of individual cells. However, preparing raw sequence data for further analysis is not a straightforward process. Biases, artifacts and other sources of unwanted variation are present in the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC) and normalization. Results: We have developed the R/Bioconductor package scater to facilitate rigorous pre-processing, quality control, normalization and visualization of scRNA-seq data. The package provides a convenient, flexible workflow to process raw sequencing reads into a high-quality expression dataset ready for downstream analysis. scater provides a rich suite of plotting tools for single-cell data and a flexible data structure that is compatible with existing tools and can be used as infrastructure for future software development. Availability and Implementation: The open-source code, along with installation instructions, vignettes and case studies, is available through Bioconductor at http://bioconductor.org/packages/scater . Contact: davis@ebi.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Linguagens de Programação , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Análise de Célula Única/métodos , Software , Linhagem Celular , Humanos , Análise de Componente Principal , Controle de Qualidade , RNA/genética , Estatística como Assunto
16.
Stat Appl Genet Mol Biol ; 16(2): 83-93, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28599403

RESUMO

RNA sequencing (RNA-seq) is widely used to study gene expression changes associated with treatments or biological conditions. Many popular methods for detecting differential expression (DE) from RNA-seq data use generalized linear models (GLMs) fitted to the read counts across independent replicate samples for each gene. This article shows that the standard formula for the residual degrees of freedom (d.f.) in a linear model is overstated when the model contains fitted values that are exactly zero. Such fitted values occur whenever all the counts in a treatment group are zero as well as in more complex models such as those involving paired comparisons. This misspecification results in underestimation of the genewise variances and loss of type I error control. This article proposes a formula for the reduced residual d.f. that restores error control in simulated RNA-seq data and improves detection of DE genes in a real data analysis. The new approach is implemented in the quasi-likelihood framework of the edgeR software package. The results of this article also apply to RNA-seq analyses that apply linear models to log-transformed counts, such as those in the limma software package, and more generally to any count-based GLM where exactly zero fitted values are possible.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA , Software , Sequência de Bases , Modelos Lineares , RNA/química
17.
Nucleic Acids Res ; 44(5): e45, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26578583

RESUMO

Chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) is widely used to identify binding sites for a target protein in the genome. An important scientific application is to identify changes in protein binding between different treatment conditions, i.e. to detect differential binding. This can reveal potential mechanisms through which changes in binding may contribute to the treatment effect. The csaw package provides a framework for the de novo detection of differentially bound genomic regions. It uses a window-based strategy to summarize read counts across the genome. It exploits existing statistical software to test for significant differences in each window. Finally, it clusters windows into regions for output and controls the false discovery rate properly over all detected regions. The csaw package can handle arbitrarily complex experimental designs involving biological replicates. It can be applied to both transcription factor and histone mark datasets, and, more generally, to any type of sequencing data measuring genomic coverage. csaw performs favorably against existing methods for de novo DB analyses on both simulated and real data. csaw is implemented as a R software package and is freely available from the open-source Bioconductor project.


Assuntos
Genoma , Histonas/metabolismo , Software , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Imunoprecipitação da Cromatina , Conjuntos de Dados como Assunto , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , Fatores de Transcrição/genética
18.
Nucleic Acids Res ; 42(11): e95, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24852250

RESUMO

A common aim in ChIP-seq experiments is to identify changes in protein binding patterns between conditions, i.e. differential binding. A number of peak- and window-based strategies have been developed to detect differential binding when the regions of interest are not known in advance. However, careful consideration of error control is needed when applying these methods. Peak-based approaches use the same data set to define peaks and to detect differential binding. Done improperly, this can result in loss of type I error control. For window-based methods, controlling the false discovery rate over all detected windows does not guarantee control across all detected regions. Misinterpreting the former as the latter can result in unexpected liberalness. Here, several solutions are presented to maintain error control for these de novo counting strategies. For peak-based methods, peak calling should be performed on pooled libraries prior to the statistical analysis. For window-based methods, a hybrid approach using Simes' method is proposed to maintain control of the false discovery rate across regions. More generally, the relative advantages of peak- and window-based strategies are explored using a range of simulated and real data sets. Implementations of both strategies also compare favourably to existing programs for differential binding analyses.


Assuntos
Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/metabolismo , Análise de Sequência de DNA/métodos , Sítios de Ligação , Histonas/metabolismo , Software , Fatores de Transcrição/metabolismo
19.
BMC Bioinformatics ; 16: 258, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26283514

RESUMO

BACKGROUND: Chromatin conformation capture with high-throughput sequencing (Hi-C) is a technique that measures the in vivo intensity of interactions between all pairs of loci in the genome. Most conventional analyses of Hi-C data focus on the detection of statistically significant interactions. However, an alternative strategy involves identifying significant changes in the interaction intensity (i.e., differential interactions) between two or more biological conditions. This is more statistically rigorous and may provide more biologically relevant results. RESULTS: Here, we present the diffHic software package for the detection of differential interactions from Hi-C data. diffHic provides methods for read pair alignment and processing, counting into bin pairs, filtering out low-abundance events and normalization of trended or CNV-driven biases. It uses the statistical framework of the edgeR package to model biological variability and to test for significant differences between conditions. Several options for the visualization of results are also included. The use of diffHic is demonstrated with real Hi-C data sets. Performance against existing methods is also evaluated with simulated data. CONCLUSIONS: On real data, diffHic is able to successfully detect interactions with significant differences in intensity between biological conditions. It also compares favourably to existing software tools on simulated data sets. These results suggest that diffHic is a viable approach for differential analyses of Hi-C data.


Assuntos
Genômica , Software , Cromatina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Internet , Alinhamento de Sequência , Análise de Sequência de DNA
20.
Cell Rep ; 43(2): 113754, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354086

RESUMO

Blood-borne pathogens can cause systemic inflammatory response syndrome (SIRS) followed by protracted, potentially lethal immunosuppression. The mechanisms responsible for impaired immunity post-SIRS remain unclear. We show that SIRS triggered by pathogen mimics or malaria infection leads to functional paralysis of conventional dendritic cells (cDCs). Paralysis affects several generations of cDCs and impairs immunity for 3-4 weeks. Paralyzed cDCs display distinct transcriptomic and phenotypic signatures and show impaired capacity to capture and present antigens in vivo. They also display altered cytokine production patterns upon stimulation. The paralysis program is not initiated in the bone marrow but during final cDC differentiation in peripheral tissues under the influence of local secondary signals that persist after resolution of SIRS. Vaccination with monoclonal antibodies that target cDC receptors or blockade of transforming growth factor ß partially overcomes paralysis and immunosuppression. This work provides insights into the mechanisms of paralysis and describes strategies to restore immunocompetence post-SIRS.


Assuntos
Patógenos Transmitidos pelo Sangue , Terapia de Imunossupressão , Humanos , Células Dendríticas , Paralisia , Síndrome de Resposta Inflamatória Sistêmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA