Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Electrophoresis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924581

RESUMO

The search for chemical indicators of life is a fundamental component of potential future spaceflight missions to ocean worlds. Capillary electrophoresis (CE) is a useful separation method for the determination of the small organic molecules, such as amino acids and nucleobases, that could be used to help determine whether or not life is present in a sample collected during such missions. CE is under development for spaceflight applications using multiple detection systems, such as laser induced fluorescence (LIF) and mass spectrometry (MS). Here we report CE-based methods for separation and detection of major polar metabolites in cells, such as amino acids, nucleobases/sides, and oxidized and reduced glutathione using detectors that are less expensive alternatives to LIF and MS. Direct UV detection, indirect UV detection, and capacitvely coupled contactless conductivity detection (C4D) were tested with CE, and a combination of direct UV and C4D allowed the detection of the widest variety of metabolites. The optimized method was used to profile metabolites found in samples of Escherichia coli and Pseudoalteromonas haloplanktis and showed distinct differences between the species.

2.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800016

RESUMO

Carbon-based nanomaterials are nowadays attracting lots of attention, in particular in the biomedical field, where they find a wide spectrum of applications, including, just to name a few, the drug delivery to specific tumor cells and the improvement of non-invasive imaging methods. Nanoparticles inhaled during breathing accumulate in the lung alveoli, where they interact and are covered with lung surfactants. We recently demonstrated that an apparently non-toxic concentration of engineered carbon nanodiamonds (ECNs) is able to induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Therefore, the complete understanding of their "real" biosafety, along with their possible combination with other molecules mimicking the in vivo milieu, possibly allowing the modulation of their side effects becomes of utmost importance. Based on the above, the focus of the present work was to investigate whether the cellular alterations induced by an apparently non-toxic concentration of ECNs could be counteracted by their incorporation into a synthetic lung surfactant (DPPC:POPG in 7:3 molar ratio). By using two different cell lines (alveolar (A549) and microglial (BV-2)), we were able to show that the presence of lung surfactant decreased the production of ECNs-induced nitric oxide, total reactive oxygen species, and malondialdehyde, as well as counteracted reduced glutathione depletion (A549 cells only), ameliorated cell energy status (ATP and total pool of nicotinic coenzymes), and improved mitochondrial phosphorylating capacity. Overall, our results on alveolar basal epithelial and microglial cell lines clearly depict the benefits coming from the incorporation of carbon nanoparticles into a lung surfactant (mimicking its in vivo lipid composition), creating the basis for the investigation of this combination in vivo.


Assuntos
Microglia/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Surfactantes Pulmonares/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Células A549 , Animais , Carbono/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Camundongos , Microglia/citologia , Microglia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Fosfatidilgliceróis/química , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/química , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade Subcrônica/métodos
3.
Analyst ; 145(3): 865-872, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31820743

RESUMO

Microchip electrophoresis coupled with amperometric detection is more popular than voltammetric detection due to the lower limits of detection that can be achieved. However, voltammetry provides additional information about the redox properties of the analyte that can be used for peak identification. In this paper, two dual electrode configurations for microchip electrophoresis are described and evaluated for obtaining voltammetric information using amperometry. The dual-series electrode configuration was first evaluated to generate current ratios in a single run by applying two different potentials to the working electrodes placed perpendicular to the separation channel. However, it was found that it is difficult to obtain realistic current ratios with this configuration, primarily due to the relative placement of electrodes with respect to the channel end of the simple-t microchip. Correction factors were needed to obtain current ratios similar to those that would be obtained for sequential injections at two different potentials using a single electrode. A second approach using a dual-channel chip with two parallel electrodes was then developed and evaluated for obtaining voltammetric identification. The newly developed microchip permitted the injection of same amount of sample into two unique separation channels, each with an electrode at a different detection potential. Migration times and current ratios for several biologically important molecules and potential interferences including nitrite, tyrosine, hydrogen peroxide, and azide were obtained and compared to the responses obtained for analytes found in macrophage cell lysates.


Assuntos
Eletroforese em Microchip/métodos , Animais , Azidas/análise , Técnicas Eletroquímicas , Eletrodos , Macrófagos/citologia , Macrófagos/metabolismo , Óxido Nítrico/análise , Nitritos/análise , Tirosina/análise
4.
Analyst ; 145(5): 1768-1776, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31915763

RESUMO

The development of a separation-based sensor for catecholamines based on microdialysis (MD) coupled to microchip electrophoresis (ME) with electrochemical (EC) detection is described. The device consists of a pyrolyzed photoresist film working electrode and a poly(dimethylsiloxane) microchip with a flow-gated sample injection interface. The chip was partially reversibly sealed to the glass substrate by selectively exposing only the top section of the chip to plasma. This partially reversible chip/electrode integration process not only allows the reuse of the working electrode but also greatly enhanced the reproducibility of electrode alignment with the separation channel. The developed MD-ME-EC system was then tested using l-DOPA, 3-O-MD, HVA, DOPAC, and dopamine standards, which were separated in less than 100 seconds using a background electrolyte consisting of 15 mM sodium phosphate (pH 7.4), 15 mM sodium dodecyl sulfate, and 2.5 mM boric acid. A potential of +1.0 V vs. Ag/AgCl was used for amperometric detection of the analytes. The device was evaluated for on-line monitoring of the conversion of l-DOPA to dopamine in vitro and for monitoring dopamine release in an anesthetized rat in vivo following high K+ stimulation. The system was able to detect stimulated dopamine release in vivo but not endogenous levels of dopamine.


Assuntos
Encéfalo/metabolismo , Catecolaminas/análise , Dopamina/análise , Eletroquímica/métodos , Eletrodos , Eletroforese em Microchip/métodos , Levodopa/análise , Animais , Catecolaminas/isolamento & purificação , Dopamina/isolamento & purificação , Levodopa/isolamento & purificação , Masculino , Ratos , Ratos Sprague-Dawley
5.
Anal Bioanal Chem ; 412(24): 6101-6119, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32347360

RESUMO

Microchip electrophoresis with amperometric detection (ME-EC) is a useful tool for the determination of redox active compounds in complex biological samples. In this review, a brief background on the principles of ME-EC is provided, including substrate types, electrode materials, and electrode configurations. Several different detection approaches are described, including dual-channel systems for dual-electrode detection and electrochemistry coupled with fluorescence and chemiluminescence. The application of ME-EC to the determination of catecholamines, adenosine and its metabolites, and reactive nitrogen and oxygen species in microdialysis samples and cell lysates is also detailed. Lastly, approaches for coupling of ME-EC with microdialysis sampling to create separation-based sensors that can be used for near real-time monitoring of drug metabolism and neurotransmitters in freely roaming animals are provided. Graphical abstract.


Assuntos
Técnicas Eletroquímicas/métodos , Eletroforese em Microchip/métodos , Animais , Eletrodos , Desenho de Equipamento , Camundongos , Microdiálise , Ovinos
6.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991717

RESUMO

Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-ß1 (TGF-ß1) and the down-regulation of the expressions of interleukins 1ß and 6 (IL-1ß and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases).


Assuntos
Carnosina/farmacologia , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Oxidantes/metabolismo , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas/metabolismo , Citocinas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Perfilação da Expressão Gênica , Imunomodulação/genética , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/genética , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7
7.
Mol Pharm ; 16(2): 607-617, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30615457

RESUMO

Contemporary approaches to treating autoimmune diseases like multiple sclerosis broadly modulate the immune system and leave patients susceptible to severe adverse effects. Antigen-specific immunotherapies (ASIT) offer a unique opportunity to selectively suppress autoreactive cell populations but have suffered from marginal efficacy even when employing traditional adjuvants to improve delivery. The development of immunologically active antigen delivery vehicles could potentially increase the clinical success of antigen-specific immunotherapies. An emulsion of the antioxidant tocopherol delivering an epitope of proteolipid protein autoantigen (PLP139-151) yielded significant efficacy in mice with experimental autoimmune encephalomyelitis (EAE). In vitro studies indicated tocopherol emulsions reduced oxidative stress in antigen-presenting cells. Ex vivo analysis revealed that tocopherol emulsions shifted cytokine responses in EAE splenocytes. In addition, IgG responses against PLP139-151 were increased in mice treated with tocopherol emulsions delivering the antigen, suggesting a possible skew in immunity. Overall, tocopherol emulsions provide a functional delivery vehicle for ASIT capable of ameliorating autoimmunity in a murine model.


Assuntos
Autoantígenos/uso terapêutico , Emulsões/química , Encefalomielite Autoimune Experimental/tratamento farmacológico , Tocoferóis/química , Tocoferóis/uso terapêutico , Animais , Autoantígenos/administração & dosagem , Citocinas/metabolismo , Feminino , Tolerância Imunológica/efeitos dos fármacos , Imunoterapia/métodos , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Baço/citologia
8.
Electrophoresis ; 39(3): 462-469, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28737835

RESUMO

On-line separations-based sensors employing microdialysis (MD) coupled to microchip electrophoresis (ME) enable the continuous monitoring of multiple analytes simultaneously. Electrochemical detection (EC) is especially amenable to on-animal systems employing MD-ME due to its ease of miniaturization. However, one of the difficulties in fabricating MD-ME-EC systems is incorporating carbon working electrodes into the device. In this paper, a novel fabrication procedure is described for the production of a PDMS/glass hybrid device that is capable of integrating hydrodynamic MD flow with ME-EC using a flow-gated interface and a pyrolyzed photoresist film carbon electrode. This fabrication method enables the reuse of carbon electrodes on a glass substrate, while still maintaining a good seal between the PDMS and glass to allow for pressure-driven MD flow. The on-line MD-ME-EC device was characterized in vitro and in vivo for monitoring analytes in the dopamine metabolic pathway. The ultimate goal is to use this device and associated instrumentation to perform on-animal, near-real time in vivo monitoring of catecholamines.


Assuntos
Carbono/química , Catecolaminas/análise , Dimetilpolisiloxanos/química , Eletroforese em Microchip/instrumentação , Vidro/química , Microdiálise/instrumentação , Animais , Dopamina/análise , Técnicas Eletroquímicas , Eletrodos , Ratos Sprague-Dawley
9.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463298

RESUMO

Human amylin is a 37-residue peptide hormone (hA1-37) secreted by ß-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer's disease, alone or co-deposited with ß-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal "cross-talk". We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17⁻29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17⁻29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17⁻29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17⁻29 (20 µM). We found a complete inhibition of hA17⁻29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.


Assuntos
Cristalinas/metabolismo , Células Endoteliais/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Proteínas Associadas aos Microtúbulos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Amiloide/toxicidade , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Fluorescência , Humanos , Agregados Proteicos , Ratos , Fatores de Tempo
10.
Mol Cell Biochem ; 425(1-2): 85-93, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27804051

RESUMO

Human amylin (hA1-37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic ß-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17-29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored the time course of hA17-29 ß-amyloid fibril and oligomer formation [without and with copper(II)], cellular toxicity of different amyloid aggregates, and involvement of specific receptors (receptor for advanced glycation end-products, RAGE; low-affinity nerve growth factor receptor, p75-NGFR) in aggregate toxicity. Fibril and oligomer formation of hA17-29 incubated at 37 °C for 0, 48, and 120 h, without or with copper(II), were measured by the thioflavin T fluorescence assay and ELISA, respectively. Toxicity of hA17-29 aggregates and effects of anti-RAGE and anti-p75-NGFR antibodies were evaluated on neuroblastoma SH-SY5Y viability. Fluorescence assay of hA17-29 indicates an initial slow rate of soluble fibril formation (48 h), followed by a slower rate of insoluble aggregate formation (120 h). The highest quantity of oligomers was recorded when hA17-29 was pre-aggregated for 48 h in the presence of copper(II) showing also the maximal cell toxicity (-44% of cell viability, p < 0.01 compared to controls). Anti-RAGE or anti-p75-NGFR antibodies almost abolished cell toxicity of hA17-29 aggregates. These results indicate that copper(II) influences the aggregation process and hA17-29 toxicities are especially attributable to oligomeric aggregates. hA17-29 aggregate toxicity seems to be mediated by RAGE and p75-NGFR receptors which might be potential targets for new drugs in T2DM treatment.


Assuntos
Amiloide/toxicidade , Cobre/toxicidade , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Linhagem Celular , Humanos , Proteínas do Tecido Nervoso/genética , Ratos , Receptor para Produtos Finais de Glicação Avançada/genética , Receptores de Fator de Crescimento Neural/genética
11.
Mol Cell Biochem ; 431(1-2): 197-210, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28290048

RESUMO

Excess nitric oxide (NO) production occurs in several pathological states, including neurodegeneration, ischemia, and inflammation, and is generally accompanied by increased oxidative/nitrosative stress. Carnosine [ß-alanine-histidine (ß-Ala-His)] has been reported to decrease oxidative/nitrosative stress-associated cell damage by reducing the amount of NO produced. In this study, we evaluated the effect of carnosine on NO production by murine RAW 264.7 macrophages stimulated with lipopolysaccharides + interferon-γ. Intracellular NO and intracellular and extracellular nitrite were measured by microchip electrophoresis with laser-induced fluorescence and by the Griess assay, respectively. Results showed that carnosine causes an apparent suppression of total NO production by stimulated macrophages accompanied by an unexpected simultaneous drastic increase in its intracellular low toxicity endproduct, nitrite, with no inhibition of inducible nitric oxide synthase (iNOS). ESI-MS and NMR spectroscopy in a cell-free system showed the formation of multiple adducts (at different ratios) of carnosine-NO and carnosine-nitrite, involving both constituent amino acids (ß-Ala and His) of carnosine, thus providing a possible mechanism for the changes in free NO and nitrite in the presence of carnosine. In stimulated macrophages, the addition of carnosine was also characterized by changes in the expression of macrophage activation markers and a decrease in the release of IL-6, suggesting that carnosine might alter M1/M2 macrophage ratio. These results provide evidence for previously unknown properties of carnosine that modulate the NO/nitrite ratio of stimulated macrophages. This modulation is also accompanied by changes in the release of pro-inflammatory molecules, and does not involve the inhibition of iNOS activity.


Assuntos
Carnosina/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Animais , Interferon gama/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
12.
Anal Bioanal Chem ; 409(19): 4529-4538, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28555342

RESUMO

It is well known that excessive production of reactive oxygen and nitrogen species is linked to the development of oxidative stress-driven disorders. In particular, nitric oxide (NO) and superoxide (O2•-) play critical roles in many physiological and pathological processes. This article reports the use of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and MitoSOX Red in conjunction with microchip electrophoresis and laser-induced fluorescence detection for the simultaneous detection of NO and O2•- in RAW 264.7 macrophage cell lysates following different stimulation procedures. Cell stimulations were performed in the presence and absence of cytosolic (diethyldithiocarbamate) and mitochondrial (2-methoxyestradiol) superoxide dismutase (SOD) inhibitors. The NO/O2•- ratios in macrophage cell lysates under physiological and proinflammatory conditions were determined. The NO/O2•- ratios were 0.60 ± 0.07 for unstimulated cells pretreated with SOD inhibitors, 1.08 ± 0.06 for unstimulated cells in the absence of SOD inhibitors, and 3.14 ± 0.13 for stimulated cells. The effect of carnosine (antioxidant) or Ca2+ (intracellular messenger) on the NO/O2•- ratio was also investigated. Graphical Abstract Simultaneous detection of nitric oxide and superoxide in macrophage cell lysates.


Assuntos
Eletroforese em Microchip/métodos , Inflamação/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Espectrometria de Fluorescência/métodos , Superóxidos/metabolismo , Animais , Camundongos , Células RAW 264.7
13.
Electrophoresis ; 37(17-18): 2297-304, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27130293

RESUMO

Dynorphin A (Dyn A) is an endogenous opioid peptide found in blood and central nervous system tissue at very low concentrations. Elevated levels of Dyn A due to different disease states, for example neurodegenerative disease, have been linked to toxic nonopioid activity. CE is a powerful technique that can achieve high-efficiency separations of charged analytes. However, CE has limited use for the analysis of basic proteins and peptides, due to their adsorption onto the inner surface of the fused silica at pHs below their pI. This adsorption can lead to a loss of efficiency, irreproducibility of migration times, and peak tailing. To obviate this problem, a polydiallyldimethylammonium chloride-stabilized gold nanoparticle-coated capillary was investigated for the separation of dynorphin metabolites. The positively charged gold nanoparticles (GNP) minimized unwanted adsorption of the positively charged peptides onto the surface of the fused-silica capillary. Separation efficiency and resolution for opioid peptides Dyn A (1-6), Dyn A (1-7), Dyn A (1-8), Dyn A (1-11), and leu-enkephalin on the GNP-coated capillary column were evaluated under different experimental parameters. The best separation of Dyn A (1-17) and its fragments was achieved using a BGE that consists of 40 mM sodium acetate buffer (pH 5) containing 5% GNP, a field strength of -306 V/cm, and a 75 µm id capillary. The developed method was applied to the separation of tryptic peptide fragments of dynorphin A (1-17).


Assuntos
Eletrocromatografia Capilar/métodos , Dinorfinas/isolamento & purificação , Ouro/química , Nanopartículas Metálicas/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Adsorção , Concentração de Íons de Hidrogênio , Mapeamento de Peptídeos , Tripsina/química
14.
Electrophoresis ; 36(16): 1912-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25958983

RESUMO

A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor l-DOPA metabolism in a rat brain slice.


Assuntos
Dopamina/análise , Dopamina/metabolismo , Técnicas Eletroquímicas/métodos , Eletroforese em Microchip/métodos , Animais , Encéfalo/metabolismo , Química Encefálica , Masculino , Redes e Vias Metabólicas , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
15.
Electrophoresis ; 36(3): 441-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25256669

RESUMO

In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration.


Assuntos
Técnicas Eletroquímicas/instrumentação , Eletroforese em Microchip/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Eletroforese em Microchip/métodos , Desenho de Equipamento , Limite de Detecção , Microdiálise , Nitritos
16.
Analyst ; 140(11): 3820-9, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25697221

RESUMO

The development of an on-animal separation-based sensor that can be employed for monitoring drug metabolism in a freely roaming sheep is described. The system consists of microdialysis sampling coupled to microchip electrophoresis with electrochemical detection (MD-ME-EC). Separations were accomplished using an all-glass chip with integrated platinum working and reference electrodes. Discrete samples from the microdialysis flow were introduced into the electrophoresis chip using a flow-gated injection approach. Electrochemical detection was accomplished in-channel using a two-electrode isolated potentiostat. Nitrite was separated by microchip electrophoresis using reverse polarity and a run buffer consisting of 50 mM phosphate at pH 7.4. The entire system was under telemetry control. The system was first tested with rats to monitor the production of nitrite following perfusion of nitroglycerin into the subdermal tissue using a linear probe. The data acquired using the on-line MD-ME-EC system were compared to those obtained by off-line analysis using liquid chromatography with electrochemical detection (LC-EC), using a second microdialysis probe implanted parallel to the first probe in the same animal. The MD-ME-EC device was then used on-animal to monitor the subdermal metabolism of nitroglycerin in sheep. The ultimate goal is to use this device to simultaneously monitor drug metabolism and behavior in a freely roaming animal.


Assuntos
Microtecnologia/instrumentação , Movimento , Preparações Farmacêuticas/isolamento & purificação , Preparações Farmacêuticas/metabolismo , Ovinos , Animais , Eletroquímica , Eletrodos , Eletroforese em Microchip , Desenho de Equipamento , Masculino , Microdiálise , Ratos
17.
Anal Bioanal Chem ; 407(23): 7003-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26159570

RESUMO

Superoxide, a naturally produced reactive oxygen species (ROS) in the human body, is involved in many pathological and physiological signaling processes. However, if superoxide formation is left unregulated, overproduction can lead to oxidative damage to important biomolecules, such as DNA, lipids, and proteins. Superoxide can also lead to the formation of peroxynitrite, an extremely hazardous substance, through its reaction with endogenously produced nitric oxide. Despite its importance, quantitative information regarding superoxide production is difficult to obtain due to its high reactivity and low concentrations in vivo. MitoHE, a fluorescent probe that specifically reacts with superoxide, was used in conjunction with microchip electrophoresis (ME) and laser-induced fluorescence (LIF) detection to investigate changes in superoxide production by RAW 264.7 macrophage cells following stimulation with phorbol 12-myristate 13-acetate (PMA). Stimulation was performed in the presence and absence of the superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC) and 2-metoxyestradiol (2-ME). The addition of these inhibitors resulted in an increase in the amount of superoxide specific product (2-OH-MitoE(+)) from 0.08 ± 0.01 fmol (0.17 ± 0.03 mM) in native cells to 1.26 ± 0.06 fmol (2.5 ± 0.1 mM) after PMA treatment. This corresponds to an approximately 15-fold increase in intracellular concentration per cell. Furthermore, the addition of 3-morpholino-sydnonimine (SIN-1) to the cells during incubation resulted in the production of 0.061 ± 0.006 fmol (0.12 ± 0.01 mM) of 2-OH-MitoE(+) per cell on average. These results demonstrate that indirect superoxide detection coupled with the use of SOD inhibitors and a separation method is a viable method to discriminate the 2-OH-MitoE(+) signal from possible interferences.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletroforese em Microchip/instrumentação , Lasers , Microscopia de Fluorescência/instrumentação , Espectrometria de Fluorescência/instrumentação , Superóxidos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Corantes Fluorescentes/síntese química , Taxa de Depuração Metabólica/efeitos dos fármacos , Taxa de Depuração Metabólica/fisiologia , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Integração de Sistemas , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
18.
Electrophoresis ; 35(4): 563-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24166826

RESUMO

Oxytocin (OT) is an endogenous and therapeutic hormone necessary for maternal health. It is also the subject of fast growing research in the field of behavioral science. This article describes a rapid CE method using UV detection at 214 nm for the determination of the deamidation products of OT. Deamidation is the most common degradation pathway of peptides and proteins and can lead to reduced therapeutic efficiency of biopharmaceuticals. To achieve a separation of the seven structurally similar desamino peptides from OT, 11 mM sulfobutyl ether ß-CD and 10% v/v MeOH were added to a BGE of 50 mM phosphate buffer at pH 6.0. The assay is linear within ≤5-100 µM for all species with a total analysis time of 12 min. The method was then applied to monitor the heat-stress degradation of OT at 70°C, where all seven desamino species were observed over a 96 h period.


Assuntos
Eletroforese Capilar/métodos , Ocitocina/química , Ocitocina/metabolismo , Aminoácidos/análise , Aminoácidos/química , Aminoácidos/metabolismo , Biotecnologia , Limite de Detecção , Reprodutibilidade dos Testes
19.
Analyst ; 139(13): 3265-73, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24728039

RESUMO

The overproduction of nitric oxide (NO) in cells results in nitrosative stress due to the generation of highly reactive species such as peroxynitrite and N2O3. These species disrupt the cellular redox processes through the oxidation, nitration, and nitrosylation of important biomolecules. Microchip electrophoresis (ME) is a fast separation method that can be used to profile cellular nitrosative stress through the separation of NO and nitrite from other redox-active intracellular components such as cellular antioxidants. This paper describes a ME method with electrochemical detection (ME-EC) for the separation of intracellular nitrosative stress markers in macrophage cells. The separation of nitrite, azide (interference), iodide (internal standard), tyrosine, glutathione, and hydrogen peroxide (neutral marker) was achieved in under 40 s using a run buffer consisting of 7.5 to 10 mM NaCl, 10 mM boric acid, and 2 mM TTAC at pH 10.3 to 10.7. Initially, NO production was monitored by the detection of nitrite (NO2(-)) in cell lysates. There was a 2.5- to 4-fold increase in NO2(-) production in lipopolysaccharide (LPS)-stimulated cells. The concentration of NO2(-) inside a single unstimulated macrophage cell was estimated to be 1.41 mM using the method of standard additions. ME-EC was then used for the direct detection of NO and glutathione in stimulated and native macrophage cell lysates. NO was identified in these studies based on its migration time and rapid degradation kinetics. The intracellular levels of glutathione in native and stimulated macrophages were also compared, and no significant difference was observed between the two conditions.


Assuntos
Eletroforese em Microchip/instrumentação , Macrófagos/química , Óxido Nítrico/análise , Nitritos/análise , Animais , Linhagem Celular , Desenho de Equipamento , Glutationa/análise , Peróxido de Hidrogênio/análise , Camundongos , Oxirredução , Ácido Peroxinitroso/análise , Tirosina/análise
20.
Anal Chem ; 85(21): 10188-95, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24010877

RESUMO

A considerable amount of attention has been focused on the analysis of single cells in an effort to better understand cell heterogeneity in cancer and neurodegenerative diseases. Although microfluidic devices have several advantages for single cell analysis, few papers have actually demonstrated the ability of these devices to monitor chemical changes in perturbed biological systems. In this paper, a new microfluidic channel manifold is described that integrates cell transport, lysis, injection, electrophoretic separation, and fluorescence detection into a single device, making it possible to analyze individual cells at a rate of 10 cells/min in an automated fashion. The system was employed to measure nitric oxide (NO) production in single T-lymphocytes (Jurkat cells) using a fluorescent marker, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA). The cells were also labeled with 6-carboxyfluorescein diacetate (6-CFDA) as an internal standard. The NO production by control cells was compared to that of cells stimulated using lipopolysaccharide (LPS), which is known to cause the expression of inducible nitric oxide synthase (iNOS) in immune-type cells. Statistical analysis of the resulting electropherograms from a population of cells indicated a 2-fold increase in NO production in the induced cells. These results compare nicely to a recently published bulk cell analysis of NO.


Assuntos
Microfluídica/instrumentação , Óxido Nítrico/biossíntese , Análise de Célula Única , Linfócitos T/metabolismo , Humanos , Células Jurkat , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA