Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 114(3): 110374, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35489616

RESUMO

Zanthoxylum armatum DC. is an important economic tree species. Prickle is a type of trichome with special morphology, and there are a lot of prickles on the leaves of Z. armatum, which seriously restricts the development of Z. armatum industry. In this study, the leaves of Z. armatum cv. Zhuye (ZY) and its budding variety 'Rongchangwuci' (WC) (A less prickly mutant variety) at different developmental stages were used as materials, and the transcriptome sequencing data were analyzed. A total of 96,931 differentially expressed genes (DEGs) were identified among the samples, among which 1560 were candidate DEGs that might be involved in hormone metabolism. The contents of JA, auxin and CK phytohormones in ZY leaves were significantly higher than those in WC leaves. Combined with weighted gene co-expression network analysis, eight genes (MYC, IAA, ARF, CRE/AHK, PP2C, ARR-A, AOS and LOX) were identified, including 25 transcripts, which might affect the metabolism of the three hormones and indirectly participate in the formation of prickles. Combining with the proteins successfully reported in other plants to regulate trichome formation, ZaMYB86, a transcription factor of R2R3 MYB family, was identified through local Blast and phylogenetic tree analysis, which might regulate prickle formation of Z. armatum. Overexpression of ZaMYB86 in mutant A. thaliana resulted in the reduction of trichomes in A. thaliana leaves, which further verified that ZaMYB86 was involved in the formation of pickles. Yeast two-hybrid results showed that ZaMYB86 interacted with ZaMYB5. Furthermore, ZaMYB5 was highly homologous to AtMYB5, a transcription factor that regulated trichomes development, in MYB DNA binding domain. Taken together, these results indicated that ZaMYB86 and ZaMYB5 act together to regulate the formation of prickles in Z. armatum. Our findings provided a new perspective for revealing the molecular mechanism of prickly formation.


Assuntos
Arabidopsis , Zanthoxylum , Transcriptoma , Zanthoxylum/genética , Arabidopsis/genética , Filogenia , Fatores de Transcrição/genética
3.
Plant Genome ; 17(1): e20422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38129947

RESUMO

Terpenoids are the main active components in the Zanthoxylum armatum leaves, which have extensive medicinal value. The Z. armatum leaf is the main by-product in the Z. armatum industry. However, the transcription factors involved in the biosynthesis of terpenoids are rarely reported. This study was performed to identify and classify the APETALA2/ethylene-responsive factor (AP2/ERF) gene family of Z. armatum. The chromosome distribution, gene structure, conserved motifs, and cis-acting elements of the promoter of the species were also comprehensively analyzed. A total of 214 ZaAP2/ERFs were identified. From the obtained transcriptome and terpenoid content data, four candidate ZaAP2/ERFs involved in the biosynthesis of terpenoids were selected via correlation and weighted gene co-expression network analysis. A phylogenetic tree was constructed using 13 AP2/ERFs related to the biosynthesis of terpenoids in other plants. ZaERF063 and ZaERF166 showed close evolutionary relationships with the ERFs in other plant species and shared a high AP2-domain sequence similarity with the two closest AP2/ERF proteins, namelySmERF8 from Salvia miltiorrhiza and AaERF4 from Artemisia annua. Further investigation into the effects of methyl jasmonate (MeJA) treatment on the content of terpenoids in Z. armatum leaves revealed that MeJA significantly induced the upregulation of ZaERF166 and led to a significant increase in the terpenoids content in Z. armatum leaves, indicating that ZaERF166 might be involved in the accumulation of terpenoids of Z. armatum. Results will be beneficial for the functional characterization of AP2/ERFs in Z. armatum and establishment of the theoretical foundation to increase the production of terpenoids via the manipulation of the regulatory elements and strengthen the development and utilization of Z. armatum leaves.


Assuntos
Fatores de Transcrição , Zanthoxylum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Terpenos , Zanthoxylum/genética , Zanthoxylum/metabolismo , Filogenia , Etilenos , Genômica
4.
Plant Genome ; 16(1): e20295, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606521

RESUMO

Zanthoxylum armatum is an important cash crop for medicinal and food purposes in Asia. However, its stems and leaves are covered with a large number of prickles, which cause many problems in the production process. The homeodomain leucine zipper (HD-ZIP) gene family is a class of transcription factors unique to plants that play an important role in biological processes such as morphogenesis, signal transduction, and secondary metabolite synthesis. However, little is known about HD-ZIP gene information that may be involved in prickle development of Z. armatum. Here, we identified 76 ZaHDZ genes from the Z. armatum genome and classified them into four subfamilies (I-IV) based on phylogenetic analysis, a classification further supported by gene structure and conserved motif analysis. Seventy-six ZaHDZ genes were unevenly distributed on chromosomes. Evolutionary analysis revealed that the expansion of ZaHDZ genes mainly were due to whole-genome duplication (WGD) or segmental duplication, and they experienced strong purifying selection pressure in the process of evolution. A total of 47 cis-elements were identified in the promoter region of ZaHDZ genes. Quantitative real-time polymerase chain reaction analysis was performed on subfamily IV ZaHDZ gene expression levels in five tissues and under four hormone treatments. Finally, ZaHDZ16 was predicted to be the candidate gene most likely to be involved in prickle development of Z. armatum. These results contribute to a better understanding of the characteristics of HD-ZIP gene family and lay a foundation for further study on the function of genes related to prickle development of Z. armatum.


Assuntos
Zanthoxylum , Zanthoxylum/genética , Zanthoxylum/metabolismo , Genoma de Planta , Filogenia , Fatores de Transcrição/genética , Zíper de Leucina/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-30046339

RESUMO

In recent years, interest in natural plant extracts for cancer treatment is growing in the drug development field. Ginkgo biloba exocarp extract (GBEE) is known for possessing inhibitory effects on various mouse and human cancer cells. And no adverse reactions were observed during its clinical application to cancer patients. The aim of this study is to investigate the inhibitory effect of GBEE on the metastasis of B16-F10 melanoma and its related mechanisms. The B16-F10 melanoma lung metastasis model was established in C57BL/6J mice. It was found that GBEE inhibited the growth and pulmonary metastasis of B16-F10 melanoma transplanted tumor and downregulated the level of MMP-9 protein. Meanwhile, the B16-F10 cells were used to study in vitro. The results showed that GBEE inhibited the proliferation and migration of B16-F10 cells. Simultaneously, it suppressed the heterogeneous adhesion of B16-F10 cells to human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner. In addition, the levels of p-PI3K, p-Akt, NF-κB, and MMP-9 were decreased, while the PI3K and Akt were not significantly changed. These results indicate that GBEE can inhibit the metastasis of B16-F10 melanoma via multiple links and the molecular mechanism involved the regulation of PI3K/Akt/NF-κB/MMP-9 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA