Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Eng Online ; 22(1): 51, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217972

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, and is related to disturbed lipid metabolism and redox homeostasis. However, a definitive drug treatment has not been approved for this disease. Studies have found that electromagnetic fields (EMF) can ameliorate hepatic steatosis and oxidative stress. Nevertheless, the mechanism remains unclear. METHODS: NAFLD models were established by feeding mice a high-fat diet. Simultaneously, EMF exposure is performed. The effects of the EMF on hepatic lipid deposition and oxidative stress were investigated. Additionally, the AMPK and Nrf2 pathways were analysed to confirm whether they were activated by the EMF. RESULTS: Exposure to EMF decreased the body weight, liver weight and serum triglyceride (TG) levels and restrained the excessive hepatic lipid accumulation caused by feeding the HFD. The EMF boosted CaMKKß protein expression, activated AMPK phosphorylation and suppressed mature SREBP-1c protein expression. Meanwhile, the activity of GSH-Px was enhanced following an increase in nuclear Nrf2 protein expression by PEMF. However, no change was observed in the activities of SOD and CAT. Consequently, EMF reduced hepatic reactive oxygen species (ROS) and MDA levels, which means that EMF relieved liver damage caused by oxidative stress in HFD-fed mice. CONCLUSIONS: EMF may activate the CaMKKß/AMPK/SREBP-1c and Nrf2 pathways to control hepatic lipid deposition and oxidative stress. This investigation indicates that EMF may be a novel therapeutic method for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Dieta Hiperlipídica , Campos Eletromagnéticos , Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Fosforilação , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
2.
Am J Physiol Endocrinol Metab ; 320(5): E951-E966, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33719588

RESUMO

Type 2 diabetes mellitus (T2DM) results in compromised bone microstructure and quality, and subsequently increased risks of fractures. However, it still lacks safe and effective approaches resisting T2DM bone fragility. Pulsed electromagnetic fields (PEMFs) exposure has proven to be effective in accelerating fracture healing and attenuating osteopenia/osteoporosis induced by estrogen deficiency. Nevertheless, whether and how PEMFs resist T2DM-associated bone deterioration remain not fully identified. The KK-Ay mouse was used as the T2DM model. We found that PEMF stimulation with 2 h/day for 8 wk remarkably improved trabecular bone microarchitecture, decreased cortical bone porosity, and promoted trabecular and cortical bone material properties in KK-Ay mice. PEMF stimulated bone formation in KK-Ay mice, as evidenced by increased serum levels of bone formation (osteocalcin and P1NP), enhanced bone formation rate, and increased osteoblast number. PEMF significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. PEMF exerted beneficial effects on osteoblast- and osteocyte-related gene expression in the skeleton of KK-Ay mice. Nevertheless, PEMF exerted no effect on serum biomarkers of bone resorption (TRAcP5b and CTX-1), osteoclast number, or osteoclast-specific gene expression (TRAP and cathepsin K). PEMF upregulated gene expression of canonical Wnt ligands (including Wnt1, Wnt3a, and Wnt10b), but not noncanonical Wnt5a. PEMF also upregulated skeletal protein expression of downstream p-GSK-3ß and ß-catenin in KK-Ay mice. Moreover, PEMF-induced improvement in bone microstructure, mechanical strength, and bone formation in KK-Ay mice was abolished after intragastric administration with the Wnt antagonist ETC-159. Together, our results suggest that PEMF can improve bone microarchitecture and quality by enhancing the biological activities of osteoblasts and osteocytes, which are associated with the activation of the Wnt/ß-catenin signaling pathway. PEMF might become an effective countermeasure against T2DM-induced bone deterioration.NEW & NOTEWORTHY PEMF improved trabecular bone microarchitecture and suppressed cortical bone porosity in T2DM KK-Ay mice. It attenuated T2DM-induced detrimental consequence on trabecular and cortical bone material properties. PEMF resisted bone deterioration in KK-Ay mice by enhancing osteoblast-mediated bone formation. PEMF also significantly suppressed osteocytic apoptosis and sclerostin expression in KK-Ay mice. The therapeutic potential of PEMF on T2DM-induced bone deterioration was associated with the activation of Wnt/ß-catenin signaling.


Assuntos
Doenças Ósseas Metabólicas/terapia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Magnetoterapia , Osteoporose/terapia , Animais , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos da radiação , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Campos Eletromagnéticos , Glucose/metabolismo , Magnetoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteogênese/fisiologia , Osteogênese/efeitos da radiação , Osteoporose/etiologia , Osteoporose/genética , Osteoporose/metabolismo , Via de Sinalização Wnt/efeitos da radiação , beta Catenina/metabolismo
3.
FASEB J ; 34(2): 3037-3050, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908035

RESUMO

Pulsed electromagnetic fields (PEMFs) and whole-body vibration (WBV) are proved to partially preserve bone mass/strength in hindlimb-unloaded and ovariectomized animals. However, the potential age-dependent skeletal response to either PEMF or WBV has not been fully investigated. Moreover, whether the coupled "mechano-electro-magnetic" signals can induce greater osteogenic potential than single stimulation remains unknown. Herein, 5-month-old or 20-month-old rats were assigned to the Control, PEMF, WBV, and PEMF + WBV groups. After 8-week treatment, single PEMF/WBV enhanced bone mass, strength, and anabolism in 5-month-old rats, but not in 20-month-old rats. PEMF + WBV induced greater increase of bone quantity, quality, and anabolism than single PEMF/WBV in young adult rats. PEMF + WBV also inhibited bone loss in elderly rats by primarily improving osteoblast and osteocyte activity, but had no effects on bone resorption. PEMF + WBV upregulated the expression of various canonical Wnt ligands and downstream molecules (p-GSK-3ß and ß-catenin), but had no impacts on noncanonical Wnt5a expression in aged skeleton, revealing the potential involvement of canonical Wnt signaling in bone anabolism of PEMF + WBV. This study not only reveals much weaker responsiveness of aged skeleton to single PEMF/WBV relative to young adult skeleton, but also presents a novel noninvasive approach based on combinatorial treatment with PEMF + WBV for improving bone health and preserving bone quantity/quality (especially for age-related osteoporosis) with stronger anabolic effects.


Assuntos
Envelhecimento , Magnetoterapia , Osteoporose , Esqueleto , Vibração , Animais , Masculino , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Osteoporose/terapia , Ratos , Ratos Sprague-Dawley , Esqueleto/metabolismo , Esqueleto/fisiopatologia
4.
FASEB J ; 34(2): 2579-2594, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908007

RESUMO

The skeleton of type 1 diabetes mellitus (T1DM) has deteriorated mechanical integrity and increased fragility, whereas the mechanisms are not fully understood. Load-induced microdamage naturally occurs in bone matrix and can be removed by initiating endogenous targeted bone remodeling. However, the microdamage accumulation in diabetic skeleton and the corresponding bone remodeling mechanisms remain poorly understood. Herein, streptozotocin-induced T1DM rats and age-matched non-diabetic rats were subjected to daily uniaxial ulnar loading for 1, 4, 7, and 10 days, respectively. The SPECT/CT and basic fuchsin staining revealed significant higher-density spatial accumulation of linear and diffuse microdamage in diabetic ulnae than non-diabetic ulnae. Linear microcracks increased within 10-day loading in diabetic bone, whereas peaked at Day 7 in non-diabetic bone. Moreover, diabetic fatigued ulnae had more severe disruptions of osteocyte canaliculi around linear microcracks. Immunostaining results revealed that diabetes impaired targeted remodeling in fatigued bone at every key stage, including increased apoptosis of bystander osteocytes, decreased RANKL secretion, reduced osteoclast recruitment and bone resorption, and impaired osteoblast-mediated bone formation. This study characterizes microdamage accumulation and abnormal remodeling mechanisms in the diabetic skeleton, which advances our etiologic understanding of diabetic bone deterioration and increased fragility from the aspect of microdamage accumulation and bone remodeling.


Assuntos
Remodelação Óssea/fisiologia , Reabsorção Óssea/metabolismo , Diabetes Mellitus/metabolismo , Osteoclastos/metabolismo , Animais , Apoptose/fisiologia , Reabsorção Óssea/fisiopatologia , Masculino , Osteócitos/metabolismo , Ratos Sprague-Dawley , Estresse Mecânico , Ulna/fisiopatologia , Suporte de Carga/fisiologia
5.
Cell Biol Int ; 44(1): 216-228, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31448865

RESUMO

Diabetic patients exhibit significant bone deterioration. Our recent findings demonstrate that mechanical vibration is capable of resisting diabetic bone loss, whereas the relevant mechanism remains unclear. We herein examined the effects of mechanical vibration on the activities and functions of osteocytes (the most abundant and well-recognized mechanosensitive cells in the bone) exposed to high glucose (HG). The osteocytic MLO-Y4 cells were incubated with 50 mM HG for 24 h, and then stimulated with 1 h/day mechanical vibration (0.5 g, 45 Hz) for 3 days. We found that mechanical vibration significantly increased the proliferation and viability of MLO-Y4 cells under the HG environment via the MTT, BrdU, and Cell Viability Analyzer assays. The apoptosis detection showed that HG-induced apoptosis in MLO-Y4 cells was inhibited by mechanical vibration. Moreover, increased cellular area, microfilament density, and anisotropy in HG-incubated MLO-Y4 cells were observed after mechanical vibration via the F-actin fluorescence staining. The real-time polymerase chain reaction and western blotting results demonstrated that mechanical vibration significantly upregulated the gene and protein expression of Wnt3a, ß-catenin, and osteoprotegerin (OPG) and decreased the sclerostin, DKK1, and receptor activator for nuclear factor-κB ligand (RANKL) expression in osteocytes exposed to HG. The enzyme-linked immunosorbent assay assays showed that mechanical vibration promoted the secretion of prostaglandin E2 and OPG, and inhibited the secretion of tumor necrosis factor-α and RANKL in the supernatant of HG-treated MLO-Y4 cells. Together, this study demonstrates that mechanical vibration improves osteocytic architecture and viability, and regulates cytokine expression and secretion in the HG environment, and implies the potential great contribution of the modulation of osteocytic activities in resisting diabetic osteopenia/osteoporosis by mechanical vibration.

6.
Exp Cell Res ; 384(1): 111547, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472117

RESUMO

Traumatic brain injury (TBI) is common and often fatal in current times. The role of poly(adenosine diphosphate-ribose) polymerase (PARP)-induced cell death (parthanatos) in TBI has not been well studied. Our past study showed that oxidative stress-induced cell death includes parthanatos by confirming the occurrence of PARP activation and nuclear translocation of apoptosis-inducing factor (AIF). As oxidative stress plays a key role in pathological progression after TBI, we believe TBI may also be alleviated by the expression of Iduna, which is the only known endogenous regulator of parthanatos. Thus, a transection model in HT-22 cells was established for present study. Downregulation of Iduna aggravated the cell damage caused by mechanical cell injury, whereas upregulation of Iduna reduced mitochondrial dysfunction induced by mechanical cell injury but exerted no effect on apoptosis associated with mitochondrial dysfunction. By contrast, Iduna prevented parthanatos by reducing PARP activation and nuclear translocation of AIF. We also investigated 2 novel p53-MDM2 pathway inhibitors, AMG 232 and Nutlin-3, which substantially reduced the protective effects of Iduna. These findings indicate that Iduna might prevent TBI by specifically inhibiting parthanatos and promoting mitochondrial function, with the p53-MDM2 pathway playing a critical role.


Assuntos
Parthanatos/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/fisiologia , Fator de Indução de Apoptose/metabolismo , Morte Celular/fisiologia , Linhagem Celular , Regulação para Baixo/fisiologia , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo
7.
J Cell Physiol ; 234(7): 10588-10601, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30422320

RESUMO

Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases. We herein systematically investigated the changes of osteocyte behaviors, functions, and its regulation on osteoclastogenesis in response to PEMF. The osteocyte-like MLO-Y4 cells were exposed to 15 Hz PEMF stimulation with different intensities (0, 5, and 30 Gauss [G]) for 2 hr. We found that the cell apoptosis and cytoskeleton organization of osteocytes were regulated by PEMF with an intensity-dependent manner. Moreover, PEMF exposure with 5 G significantly inhibited apoptosis-related gene expression and also suppressed the gene and protein expression of the receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio in MLO-Y4 cells. The formation, maturation, and osteoclastic bone-resorption capability of in vitro osteoclasts were significantly suppressed after treated with the conditioned medium from PEMF-exposed (5 G) osteocytes. Our results also revealed that the inhibition of osteoclastic formation, maturation, and bone-resorption capability induced by the conditioned medium from 5 G PEMF-exposed osteocytes was significantly attenuated after abrogating primary cilia in osteocytes using the polaris siRNA transfection. Together, our findings highlight that PEMF with 5 G can inhibit cellular apoptosis, modulate cytoskeletal distribution, and decrease RANKL/OPG expression in osteocytes, and also inhibit osteocyte-mediated osteoclastogenesis, which requires the existence of primary cilia in osteocytes. This study enriches our basic knowledge for further understanding the biological behaviors of osteocytes and is also helpful for providing a more comprehensive mechanistic understanding of the effect of electromagnetic stimulation on bone and relevant skeletal diseases (e.g., bone fracture and osteoporosis).


Assuntos
Reabsorção Óssea/genética , Osteogênese/genética , Osteoprotegerina/genética , Ligante RANK/genética , Animais , Apoptose/genética , Reabsorção Óssea/patologia , Reabsorção Óssea/terapia , Células Cultivadas , Cílios/genética , Cílios/efeitos da radiação , Citoesqueleto/genética , Campos Eletromagnéticos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Camundongos , Osteoclastos/efeitos da radiação , Osteócitos/efeitos da radiação , Osteogênese/efeitos da radiação , Transdução de Sinais/genética
8.
Cell Biol Int ; 42(10): 1410-1422, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30022568

RESUMO

The effects of load-induced interstitial fluid shear stress (FSS) on instantaneous signaling response of osteocytes (e.g., calcium signaling) have been well documented. FSS can also initiate the release of many important messenger molecules of osteocytes (e.g., ATP and PGE2 ). However, the effects of FSS on cellular function and bone metabolism-modulating cytokine expression of osteocytes have not been fully identified (some inconsistent/conflicting results have been documented). Herein, osteocyte-like MLO-Y4 cells were stimulated with 1 Pa, 2-h FSS, and the effects of FSS on cellular morphology, cytoskeletal microstructure, biological activity, and gene and protein expression of important cytokines were investigated. SEM and cytoskeleton staining revealed that FSS induced well-organized cytoskeleton and increased filopodia processes. The osteocytic viability was sustained and apoptosis was inhibited via flow cytometry. FSS promoted Wnt3a and ß-catenin gene and protein expression in 0-, 3-, and 6-h (sample collection time post FSS) groups. The FSS-stimulated cells in the 3-h group exhibited more significant effects on the promotion of OCN and Cx43 and inhibition of DKK1 and SOST expression than the 0- and 6-h groups. The 3-h group with FSS stimulation also showed the most prominent effects on suppressing RANKL and RANKL/OPG gene and protein expression. This study revealed a direct regulatory effect of FSS on osteocytic morphology and apoptotic characteristics, and showed that osteocyte-secreted bone metabolism-modulating molecule expression was regulated by FSS in a time-dependent manner. This study not only enriches our basic knowledge for understanding osteocytic mechanotransduction, but also provides important evidence for more scientific experimental design.


Assuntos
Mecanotransdução Celular/fisiologia , Osteócitos/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Citocinas/genética , Citocinas/fisiologia , Citoesqueleto/fisiologia , Regulação da Expressão Gênica/fisiologia , Hidrodinâmica , Camundongos , Microtúbulos/metabolismo , Osteócitos/citologia , Transdução de Sinais , Estresse Mecânico , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia
9.
Biochim Biophys Acta Mol Basis Dis ; 1863(4): 827-837, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28089584

RESUMO

In the present study, neuroblastoma (SH-SY5Y) cells were used to investigate the mechanisms mediating the potential protective effects of pterostilbene (PTE) against mitochondrial metabolic impairment and oxidative stress induced by hyperglycemia for mimicking the diabetic encephalopathy. High glucose medium (100mM) decreased cellular viability after 24h incubation which was evidenced by: (i) reduced mitochondrial complex I and III activities; (ii) reduced mitochondrial cytochrome C; (iii) increased reactive oxygen species (ROS) generation; (iv) decreased mitochondrial membrane potential (ΔΨm); and (v) increased lactate dehydrogenase (LDH) levels. PTE (2.5, 5, and 10µM for 24h) was nontoxic and induced the nuclear transition of Nrf2. Pretreatment of PTE (2.5, 5, and 10µM for 2h) displayed a dose-dependently neuroprotective effect, as indicated by significantly prevented high glucose-induced loss of cellular viability, generation of ROS, reduced mitochondrial complex I and III activities, reduced mitochondrial cytochrome C, decreased ΔΨm, and increased LDH levels. Moreover, the levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and glutathione S-transferase (GST) were elevated after PTE treatment. In addition, the elevation of nuclear Nrf2 by PTE treatment (10µM for 2h) was abolished by Nrf2 siRNA. Importantly, Nrf2 siRNA induced the opposite changes in mitochondrial complex I and III activities, mitochondrial cytochrome C, reactive species generation, ΔΨm, and LDH. Overall, the present findings were the first to show that pterostilbene attenuated high glucose-induced central nervous system injury in vitro through the activation of Nrf2 signaling, displaying protective effects against mitochondrial dysfunction-derived oxidative stress.


Assuntos
Glucose/farmacologia , Hipocampo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/farmacologia , Linhagem Celular Tumoral , Citocromos c/genética , Citocromos c/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Hipocampo/patologia , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/genética , Neurônios/patologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
10.
Bioelectromagnetics ; 38(1): 63-77, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27859405

RESUMO

Periodontal ligament stem cells (PDLSCs) have been confirmed to have self-renewal capacity and multidifferentiation potential and are good candidates for periodontal tissue regeneration. Pulsed electromagnetic field (PEMF) has been demonstrated to promote osteogenesis in non-union fractures, partly by regulating mesenchymal stem cells or osteoblast activity. However, there is no report about the osteo-inductive effect of PEMF stimulation on human PDLSCs (hPDLSCs). Thus, we tested the hypothesis that PEMF biophysical stimulation alone has an influence on the proliferation and osteogenic differentiation of hPDLSCs. To detect the osteo-inductive potential of bone morphogenetic protein (BMP9), we transfected the STRO-1+ /CD146+ hPDLCSs with BMP9-expressing recombinant adenoviruses. We examined the proliferation and osteogenic differentiation of hPDLSCs treated with either PEMF (15 Hz, 1 h daily, different intensities), or BMP9, or both stimuli. Cell counting kit-8 (CCK-8) assay showed that PEMF of different intensities had no effect on the proliferation of hPDLSCs and did not enhance the proliferative capability of BMP9-transfected cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting showed that the combination of both PEMFs (1.8 or 2.4 mT) and BMP9 stimulation had a synergistic effect on early and intermediate osteogenic genes and protein expressions of runt-related transcription factor 2, alkaline phosphatase, osteopontin, and late mineralized extracellular matrix formation in hPDLSCs. Bioelectromagnetics. 38:63-77, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Campos Eletromagnéticos , Fator 2 de Diferenciação de Crescimento/farmacologia , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/efeitos da radiação , Adolescente , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Criança , Matriz Extracelular/metabolismo , Humanos , Minerais/metabolismo , Células-Tronco/citologia , Regulação para Cima/efeitos dos fármacos
11.
Bioelectromagnetics ; 38(8): 602-612, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28741320

RESUMO

Pulsed electromagnetic fields (PEMF) have been proven to be effective for promoting bone mass and regulating bone turnover both experimentally and clinically. However, the exact mechanisms for the regulation of PEMF on osteoclastogenesis as well as optical exposure parameters of PEMF on inhibiting osteoclastic activities and functions remain unclear, representing significant limitations for extensive scientific application of PEMF in clinics. In this study, RAW264.7 cells incubated with RANKL were exposed to 15 Hz PEMF (2 h/day) at various intensities (0.5, 1, 2, and 3 mT) for 7 days. We demonstrate that bone resorbing capacity was significantly decreased by 0.5 mT PEMF mainly by inhibiting osteoclast formation and maturation, but enhanced at 3 mT by promoting osteoclast apoptosis. Moreover, gene expression of RANK, NFATc1, TRAP, CTSK, BAX, and BAX/BCL-2 was significantly decreased by 0.5 mT PEMF, but increased by 3 mT. Our findings reveal a significant intensity window for low-intensity PEMF in regulating bone resorption with diverse nature for modulating osteoclastogenesis and apoptosis. This study not only enriches our basic knowledge for the regulation of PEMF in osteoclastogenesis, but also may lead to more efficient and scientific clinical application of PEMF in regulating bone turnover and inhibiting osteopenia/osteoporosis. Bioelectromagnetics. 38:602-612, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Apoptose/efeitos da radiação , Reabsorção Óssea/patologia , Campos Eletromagnéticos , Osteoclastos/citologia , Osteoclastos/efeitos da radiação , Ligante RANK/farmacologia , Animais , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Osteogênese/efeitos da radiação , Células RAW 264.7
12.
World J Surg Oncol ; 15(1): 122, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679433

RESUMO

BACKGROUND: The risk factors for recurrence and death after radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) remain poorly known. This study was aimed to study the 10-year overall survival (OS) of HCC treated by ultrasound (US)-guided RFA and the risk factors for recurrence and death. METHODS: Between June 2005 and June 2016, 1000 patients with HCC treated by US-guided RFA at 4 hospitals in China; among them, 525 patients met the criteria for radical ablation and 410 had high AFP levels before RFA treatment. Clinical and biochemical factors were tested for association with recurrence and survival. Patients were divided into the recurrence (n = 348) and no recurrence groups (n = 62). RESULTS: The 5- and 10-year survival rates were 66 and 35%, respectively. Tumor size (HR = 1.36, 95% CI 1.12-1.65), albumin levels (HR = 0.76, 95% CI 0.65-0.91), prothrombin time (HR = 2.18, 95% CI 1.54-3.10), and α-fetoprotein levels (HR = 1.13, 95% CI 1.00-1.26) were independently associated with mortality after RFA for HCC. Tumor size (HR = 1.27, 95% CI: 1.15-1.40), HBV-DNA (HR = 7.70, 95% CI 3.57-16.63), AFP levels before treatment (HR = 2.172, 95% CI 1.256-3.756, P = 0.006), and AFP response (HR = 4.722, 95% CI 1.053-21.184, P = 0.0427) were independently associated with the risk of recurrence of HCC after RFA. The median survival of the patients with and without recurrence after RFA was 54 (95% CI 45-58) and 62 (95% CI 48-80) months, respectively (log-rank, P = 0.04). CONCLUSIONS: Tumor size, albumin, prothrombin time, and α-fetoprotein levels were independently associated with mortality after US-guided RFA for HCC, while tumor size and HBV-DNA were independently associated with recurrence. Patients with recurrence had a poorer survival compared with those without.


Assuntos
Carcinoma Hepatocelular/mortalidade , Ablação por Cateter/mortalidade , Neoplasias Hepáticas/mortalidade , Recidiva Local de Neoplasia/mortalidade , Cirurgia Assistida por Computador/métodos , Ultrassonografia/métodos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
13.
Biomed Eng Online ; 15: 8, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26786255

RESUMO

BACKGROUND: Extremely low frequency pulsed magnetic fields (ELFPMF) have been shown to induce Faraday currents and measurable effects on biological systems. A kind of very high frequency electromagnetic field was reported that it improved the symptoms of diabetic nephropathy (DN) which is a major complication of diabetes. However, few studies have examined the effects of ELFPMF DN at the present. The present study was designed to investigate the effects of ELFPMF on DN in streptozotocin (STZ)-induced type 1 diabetic rats. METHODS: Adult male SD rats were randomly divided into three weight-matched groups: Control (non-diabetic rats without DN), DN + ELFPMF (diabetic rats with DN exposed to ELFPMF, 8 h/days, 6 weeks) and DN (diabetic rats with DN exposed to sham ELFPMF). Renal morphology was examined by light and electron microscopy, vascular endothelial growth factor (VEGF)-A and connective tissue growth factor (CTGF) were measured by enzyme linked immune sorbent assay. RESULTS: After 6 weeks' ELFPMF exposure, alterations of hyperglycemia and weight loss in STZ-treated rats with DN were not found, while both positive and negative effects of ELFPMF on the development of DN in diabetic rats were observed. The positive one was that ELFPMF exposure attenuated the pathological alterations in renal structure observed in STZ-treated rats with DN, which were demonstrated by slighter glomerular and tubule-interstitial lesions examined by light microscopy and slighter damage to glomerular basement membrane and podocyte foot processes examined by electron microscopy. And then, the negative one was that ELFPMF stimulation statistically significantly decreased renal expression of VEGF-A and statistically significantly increased renal expression of CTGF in diabetic rats with DN, which might partially aggravate the symptoms of DN. CONCLUSION: Both positive and negative effects of ELFPMF on the development of DN in diabetic rats were observed. The positive effect induced by ELFPMF might play a dominant role in the procession of DN in diabetic rats, and it is suggested that the positive effect should be derived from the correction of pathogenic diabetes-induced mediators.


Assuntos
Nefropatias Diabéticas/terapia , Magnetoterapia , Estreptozocina/efeitos adversos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Bioelectromagnetics ; 37(3): 152-162, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891468

RESUMO

Substantial evidence indicates that pulsed electromagnetic fields (PEMF) could accelerate fracture healing and enhance bone mass, whereas the unclear mechanism by which PEMF stimulation promotes osteogenesis limits its extensive clinical application. In the present study, effects and potential molecular signaling mechanisms of PEMF on in vitro osteoblasts were systematically investigated. Osteoblast-like MC3T3-E1 cells were exposed to PEMF burst (0.5, 1, 2, or 6 h/day) with 15.38 Hz at various intensities (5 Gs (0.5 mT), 10 Gs (1 mT), or 20 Gs (2 mT)) for 3 consecutive days. PEMF stimulation at 20 Gs (2 mT) for 2 h/day exhibited most prominent promotive effects on osteoblastic proliferation via Cell Counting kit-8 analyses. PEMF exposure induced well-organized cytoskeleton, and promoted formation of extracellular matrix mineralization nodules. Significantly increased proliferation-related gene expressions at the proliferation phase were observed after PEMF stimulation, including Ccnd 1 and Ccne 1. PEMF resulted in significantly increased gene and protein expressions of alkaline phosphatase and osteocalcin at the differentiation phase of osteoblasts rather than the proliferation phase via quantitative reverse transcription polymerase chain reaction and Western blotting analyses. Moreover, PEMF upregulated gene and protein expressions of collagen type 1, Runt-related transcription factor 2 and Wnt/ß-catenin signaling (Wnt1, Lrp6, and ß-catenin) at proliferation and differentiation phases. Together, our present findings highlight that PEMF stimulated osteoblastic functions through a Wnt/ß-catenin signaling-associated mechanism and, hence, regulates downstream osteogenesis-associated gene/protein expressions. Bioelectromagnetics. 37:152-162, 2016. © 2016 Wiley Periodicals, Inc.

15.
FASEB J ; 28(4): 1582-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24347610

RESUMO

Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca(2+)) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized bone matrix under dynamic loading remains unknown. Using a novel synchronized loading/imaging technique, we successfully visualized in real time and quantified Ca(2+) responses in osteocytes and bone surface cells in situ under controlled dynamic loading on intact mouse tibia. The resultant fluid-induced shear stress on the osteocyte in the lacunocanalicular system (LCS) was also quantified. Osteocytes, but not surface cells, displayed repetitive Ca(2+) spikes in response to dynamic loading, with spike frequency and magnitude dependent on load magnitude, tissue strain, and shear stress in the LCS. The Ca(2+) oscillations were significantly reduced by endoplasmic reticulum (ER) depletion and P2 purinergic receptor (P2R)/phospholipase C (PLC) inhibition. This study provides direct evidence that osteocytes respond to in situ mechanical loading by Ca(2+) oscillations, which are dependent on the P2R/PLC/inositol trisphosphate/ER pathway. This study develops a novel approach in skeletal mechanobiology and also advances our fundamental knowledge of bone mechanotransduction.


Assuntos
Sinalização do Cálcio/fisiologia , Mecanotransdução Celular/fisiologia , Osteócitos/metabolismo , Tíbia/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Recuperação de Fluorescência Após Fotodegradação , Espaço Intracelular/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Neomicina/farmacologia , Osteócitos/citologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Receptores Purinérgicos P2/metabolismo , Estresse Mecânico , Tíbia/citologia , Tíbia/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Suporte de Carga
16.
Zhonghua Gan Zang Bing Za Zhi ; 22(8): 577-9, 2014 Aug.
Artigo em Zh | MEDLINE | ID: mdl-25243956

RESUMO

OBJECTIVE: To investigate the effect and clinical significance of glucocorticoid on CD4+CD25+ regulatory T cells (Tregs) in patients with hepatitis B virus (HBV)-related pre-liver failure. METHODS: The subjects of this study included 78 patients with pre-liver failure induced by HBV (cases) and 24 healthy individuals (controls). Among the 78 cases, 42 received glucocorticoid treatment and 36 did not. Between-group differences in Tregs (in peripheral blood) were evaluated by flow cytometry and statistical analysis. RESULTS: Two weeks of glucocorticoid treatment led to an increase in Treg level compared to baseline (before therapy: 2.76 ± 0.73 vs. 3.88 ± 1.60). In addition, after the two weeks of glucocorticoid treatment, the Treg level of improved patients was significantly higher than that measured at baseline (before therapy: 2.70 ± 0.77 vs 3.97 ± 1.59, P < 0.05). CONCLUSION: Glucocorticoids up-regulate the expression of Treg cells, which may contribute to the immunological mechanism that protects pre-liver failure patients from deterioration of their condition. Careful inspection and monitoring of Treg levels may help improve prognosis of these patients.


Assuntos
Glucocorticoides/uso terapêutico , Falência Hepática/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Adulto , Estudos de Casos e Controles , Feminino , Vírus da Hepatite B , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/imunologia , Humanos , Falência Hepática/virologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Nat Commun ; 15(1): 890, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291059

RESUMO

Type 2 diabetes (T2D)-related fragility fractures represent an increasingly tough medical challenge, and the current treatment options are limited. Mechanical loading is essential for maintaining bone integrity, although bone mechano-responsiveness in T2D remains poorly characterized. Herein, we report that exogenous cyclic loading-induced improvements in bone architecture and strength are compromised in both genetically spontaneous and experimentally-induced T2D mice. T2D-induced reduction in bone mechano-responsiveness is directly associated with the weakened Ca2+ oscillatory dynamics of osteocytes, although not those of osteoblasts, which is dependent on PPARα-mediated specific reduction in osteocytic SERCA2 pump expression. Treatment with the SERCA2 agonist istaroxime was demonstrated to improve T2D bone mechano-responsiveness by rescuing osteocyte Ca2+ dynamics and the associated regulation of osteoblasts and osteoclasts. Moreover, T2D-induced deterioration of bone mechano-responsiveness is blunted in mice with osteocytic SERCA2 overexpression. Collectively, our study provides mechanistic insights into T2D-mediated deterioration of bone mechano-responsiveness and identifies a promising countermeasure against T2D-associated fragility fractures.


Assuntos
Diabetes Mellitus Tipo 2 , Osteócitos , Animais , Camundongos , Osso e Ossos , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Osteoblastos/metabolismo , Osteócitos/metabolismo
18.
Biomed Eng Online ; 12: 100, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24103365

RESUMO

BACKGROUND: When ascending to the high altitude, people living in low altitude areas will suffer from acute mountain sickness. The aim of this study is to test the hypothesis that whether an oxygen concentration membrane can be made and used to construct a new portable oxygen enrichment device for individuals in acute exposure to the high altitude. METHODS: The membrane was fabricated using vinylsiloxane rubber, polyphenylene oxide hydrogen silicone polymers, chloroplatinic acid and isopropyl alcohol. The membrane was assembled in a frame and the performance was tested in terms of concentration of oxygen, flow rate of oxygen enriched air, pressure ratio across the membrane and ambient temperature. Furthermore, the oxygen concentration device was constructed using the membrane, a DC fan, vacuum pump and gas buffer. A nonrandomized preliminary field test was conducted, in which eight healthy male subjects were flown to Tibet (Lhasa, 3,700 m). First, subjects wore the oxygen enrichment device and performed an incremental exercise on cycle ergometer. The test included heart rate (HR), saturation of peripheral oxygen (SpO2) and physical work capacity (PWC). Then, after a rest period of 4 hours, the experimental protocol was repeated without oxygen enrichment device. RESULTS: The testing showed that the membrane could increase the oxygen concentration by up to 30%. Simulation test indicated that although the performance of the oxygen enrichment device decreased with altitudes, the oxygen concentration could still maintain 28% with flow rate of enriched air 110 cm3/s at 5000 m. The field test showed that higher SpO2, lower HR, and better PWC (measured by the PWC-170) were observed from all the subjects using oxygen enrichment device compared with non-using (P < 0.01). CONCLUSIONS: We concluded that the new portable oxygen enrichment device would be effective in improving exercise performance when ascending to the high altitude.


Assuntos
Doença da Altitude/terapia , Altitude , Membranas Artificiais , Oxigenoterapia/instrumentação , Humanos , Masculino , Máscaras , Adulto Jovem
19.
J Bone Miner Res ; 38(4): 597-614, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680558

RESUMO

Chronic high-altitude hypoxia induces irreversible abnormalities in various organisms. Emerging evidence indicates that hypobaric hypoxia markedly suppresses bone mass and bone strength. However, few effective means have been identified to prevent such bone deficits. Here, we assessed the potential of pulsed electromagnetic fields (PEMFs) to noninvasively resist bone deterioration induced by hypobaric hypoxia. We observed that exogenous PEMF treatment at 15 Hz and 20 Gauss (Gs) improved the cancellous and cortical bone mass, bone microstructure, and skeletal mechano-properties in rats subjected to chronic exposure of hypobaric hypoxia simulating an altitude of 4500 m for 6 weeks by primarily modulating osteoblasts and osteoblast-mediated bone-forming activity. Moreover, our results showed that whereas PEMF stimulated the functional activity of primary osteoblasts in hypoxic culture in vitro, it had negligible effects on osteoclasts and osteocytes exposed to hypoxia. Mechanistically, the primary cilium was found to function as the major electromagnetic sensor in osteoblasts exposed to hypoxia. The polycystins PC-1/PC-2 complex was identified as the primary calcium channel in the primary cilium of hypoxia-exposed osteoblastic cells responsible for the detection of external PEMF signals, and thereby translated these biophysical signals into intracellular biochemical events involving significant increase in the intracellular soluble adenylyl cyclase (sAC) expression and subsequent elevation of cyclic adenosine monophosphate (cAMP) concentration. The second messenger cAMP inhibited the transcription of oxygen homeostasis-related hypoxia-inducible factor 1-alpha (HIF-1α), and thus enhanced osteoblast differentiation and improved bone phenotype. Overall, the present study not only advances our understanding of bone physiology at high altitudes, but more importantly, proposes effective means to ameliorate high altitude-induced bone loss in a noninvasive and cost-effective manner. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Doença da Altitude , Ratos , Animais , Doença da Altitude/metabolismo , Campos Eletromagnéticos , Cílios , Osso e Ossos , Hipóxia/complicações , Hipóxia/metabolismo , Osteoblastos/metabolismo , AMP Cíclico/metabolismo
20.
Neuroscience ; 513: 64-75, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395917

RESUMO

Memory impairment is one of the neuropsychological effects of hypobaric hypoxia (HH), which can be associated with programmed cell death, such as apoptosis and ferroptosis. Emerging evidence indicates crosstalk between apoptosis and ferroptosis, while the crosstalk between HH-induced apoptosis and ferroptosis in the hippocampus has not been clarified. Here, microarray profiles were extracted to analyze the differentially expressed genes with and without HH exposure, and keratin 18 (Krt18) was found to be a potential gene related to both apoptosis and ferroptosis. Then, we conducted morphological observations that showed that apoptosis and ferroptosis coexisted in the rat hippocampus after HH exposure. Combined with the real-time q-PCR analysis, the mRNA expression of Krt18 decreased significantly after HH exposure for 1 day and 3 days, and Mapk10 (JNK3) was upregulated at the corresponding time points. After exposure for 7 days, Krt18 and JNK3 showed no significant change. In conclusion, Krt18 may regulate apoptosis and ferroptosis simultaneously, possibly via the JNK signaling pathway, which might provide a potential central target for apoptosis and ferroptosis in hippocampal injury after HH exposure.


Assuntos
Ferroptose , Ratos , Animais , Ratos Sprague-Dawley , Queratina-18/metabolismo , Queratina-18/farmacologia , Hipóxia/metabolismo , Apoptose , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA