Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606344

RESUMO

Erythroneurini is the largest tribe of the microleafhopper subfamily Typhlocybinae. Most prior research on this tribe has focused on traditional classification, phylogeny, and control of agricultural pests, and the phylogeography of the group remains poorly understood. In this study, the mitochondrial genomes of 10 erythroneurine species were sequenced, and sequences of four genes were obtained for 12 geographical populations of Seriana bacilla. The new sequence data were combined with previously available mitochondrial DNA sequence data and analyzed using Bayesian and Maximum-Likelihood-based phylogenetic methods to elucidate relationships among genera and species and estimate divergence times. Seriana was shown to be derived from within Empoascanara. Phylogeographic and population genetic analysis of the endemic Chinese species Seriana bacilla suggest that the species diverged about 54.85 Mya (95% HPD: 20.76-66.23 million years) in the Paleogene period and that population divergence occurred within the last 14 million years. Ancestral area reconstruction indicates that Seriana bacilla may have originated in the central region of Guizhou, and geographical barriers are the main factors affecting gene flow among populations. Ecological niche modeling using the MaxEnt model suggests that the distribution of the species was more restricted in the past but is likely to expand in the future years 2050 and 2070.

2.
Ecol Evol ; 14(7): e70003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39026963

RESUMO

Knowing the impacts of global climate change on the habitat suitability distribution of Limassolla leafhoppers contributes to understanding the feedback of organisms on climate change from a macroecological perspective, and provides important scientific basis for protecting the ecological environment and biodiversity. However, there is limited knowledge on this aspect. Thus, our study aimed to address this gap by analyzing Asian habitat suitability and centroid shifts of Limassolla based on 19 bioclimatic variables and occurrence records. Selecting five ecological niche models with the outstanding predictive performance (Maxlike, generalized linear model, generalized additive model, random forest, and maximum entropy) along with their ensemble model from 12 models, the current habitat suitability of Limassolla and its future habitat suitability under two Shared Socio-economic Pathways (SSP1-2.6 and SSP5-8.5) in the 2050s and 2090s were predicted. The results showed that the prediction results of the five models are generally consistent. Based on ensemble model, 11 potential biodiversity hotspots with high suitability were identified. With climate change, the suitable range of Limassolla will experience both expansion and contraction. In SSP5-8.52050s, the expansion area is 118.56 × 104 km2, while the contraction area is 25.40 × 104 km2; in SSP1-2.62090s, the expansion area is 91.71 × 104 km2, and the contraction area is 26.54 × 104 km2. Furthermore, the distribution core of Limassolla will shift toward higher latitudes in the northeast direction, and the precipitation of warmest quarter was found to have the greatest impact on the distribution of Limassolla. Our research results supported our four hypotheses. Finally, this research suggests establishing ecological reserves in identified contraction to prevent habitat loss, enhancing the protection of biodiversity hotspots, and pursuing a sustainable development path with reduced emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA