RESUMO
Evolution of a complete nitrogen (N) cycle relies on the onset of ammonia oxidation, which aerobically converts ammonia to nitrogen oxides. However, accurate estimation of the antiquity of ammonia-oxidizing bacteria (AOB) remains challenging because AOB-specific fossils are absent and bacterial fossils amenable to calibrate molecular clocks are rare. Leveraging the ancient endosymbiosis of mitochondria and plastid, as well as using state-of-the-art Bayesian sequential dating approach, we obtained a timeline of AOB evolution calibrated largely by eukaryotic fossils. We show that the first AOB evolved in marine Gammaproteobacteria (Gamma-AOB) and emerged between 2.1 and 1.9 billion years ago (Ga), thus postdating the Great Oxidation Event (GOE; 2.4 to 2.32â Ga). To reconcile the sedimentary N isotopic signatures of ammonia oxidation occurring near the GOE, we propose that ammonia oxidation likely occurred at the common ancestor of Gamma-AOB and Gammaproteobacterial methanotrophs, or the actinobacterial/verrucomicrobial methanotrophs which are known to have ammonia oxidation activities. It is also likely that nitrite was transported from the terrestrial habitats where ammonia oxidation by archaea took place. Further, we show that the Gamma-AOB predated the anaerobic ammonia-oxidizing (anammox) bacteria, implying that the emergence of anammox was constrained by the availability of dedicated ammonia oxidizers which produce nitrite to fuel anammox. Our work supports a new hypothesis that N redox cycle involving nitrogen oxides evolved rather late in the ocean.
Assuntos
Amônia , Fósseis , Oxirredução , Amônia/metabolismo , Gammaproteobacteria/metabolismo , Gammaproteobacteria/genética , Bactérias/metabolismo , Bactérias/genética , Evolução Biológica , Filogenia , Simbiose , Eucariotos/metabolismo , Eucariotos/genética , Ciclo do NitrogênioRESUMO
The anaerobic ammonium oxidation (anammox) bacteria can transform ammonium and nitrite to dinitrogen gas, and this obligate anaerobic process accounts for up to half of the global nitrogen loss in surface environments. Yet its origin and evolution, which may give important insights into the biogeochemistry of early Earth, remain enigmatic. Here, we performed a comprehensive phylogenomic and molecular clock analysis of anammox bacteria within the phylum Planctomycetes. After accommodating the uncertainties and factors influencing time estimates, which include implementing both a traditional cyanobacteria-based and a recently developed mitochondria-based molecular dating approach, we estimated a consistent origin of anammox bacteria at early Proterozoic and most likely around the so-called Great Oxidation Event (GOE; 2.32-2.5â Ga) which fundamentally changed global biogeochemical cycles. We further showed that during the origin of anammox bacteria, genes involved in oxidative stress adaptation, bioenergetics, and anammox granules formation were recruited, which might have contributed to their survival on an increasingly oxic Earth. Our findings suggest the rising levels of atmospheric oxygen, which made nitrite increasingly available, was a potential driving force for the emergence of anammox bacteria. This is one of the first studies that link the GOE to the evolution of obligate anaerobic bacteria.
Assuntos
Compostos de Amônio , Bactérias Anaeróbias , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias/genética , Bactérias Anaeróbias/genética , Nitritos , Nitrogênio , Oxirredução , Filogenia , Compostos de Amônio QuaternárioRESUMO
Perfluorooctane sulfonyl fluoride (PFOSF) and perfluorohexane sulfonyl fluoride (PFHxSF) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and 2022, respectively. To date, their concentrations in environmental samples have not been reported due to the lack of sensitive methods. Herein, a novel chemical derivatization was developed for quantitative analysis of trace PFOSF and PFHxSF in soil by derivatizing them to the corresponding perfluoroalkane sulfinic acids. The method showed good linearity in the range from 25 to 500 ng L-1 with correlation coefficients (R2) better than 0.99. The detection limit of PFOSF in soil was 0.066 ng g-1 with recoveries in the range of 96-111%. Meanwhile, the detection limit of PFHxSF was 0.072 ng g-1 with recoveries in the range of 72-89%. Simultaneously, perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) were also detected accurately without being affected by the derivative reaction. By applying this method in an abandoned fluorochemical manufacturing facility, PFOSF and PFHxSF were successfully detected at concentrations ranging from 2.7 to 357 ng g-1 and 0.23 to 26 ng g-1 dry weight, respectively. It is very interesting that 2 years after factory relocation, there still exists high concentrations of PFOSF and PFHxSF, which is of concern.
Assuntos
Fluorocarbonos , Ácidos Sulfínicos , Espectrometria de Massas em Tandem/métodos , Solo , Cromatografia Líquida , Fluorocarbonos/análiseRESUMO
Marine intertidal sediments fluctuate in redox conditions and nutrient availability, and they are also known as an important sink of nitrogen mainly through denitrification, yet how denitrifying bacteria adapt to this dynamic habitat remains largely untapped. Here, we investigated novel intertidal benthic ecotypes of the model pelagic marine bacterium Ruegeria pomeroyi DSS-3 with a population genomic approach. While differing by only 1.3% at the 16S rRNA gene level, members of the intertidal benthic ecotypes are complete denitrifiers whereas the pelagic ecotype representative (DSS-3) is a partial denitrifier lacking a nitrate reductase. The intertidal benthic ecotypes are further differentiated by using non-homologous nitrate reductases and a different set of genes that allow alleviating oxidative stress and acquiring organic substrates. In the presence of nitrate, the two ecotypes showed contrasting growth patterns under initial oxygen concentrations at 1 vol% versus 7 vol% and supplemented with different carbon sources abundant in intertidal sediments. Collectively, this combination of evidence indicates that there are cryptic niches in coastal intertidal sediments that support divergent evolution of denitrifying bacteria. This knowledge will in turn help understand how these benthic environments operate to effectively remove nitrogen.
Assuntos
Nitratos , Rhodobacteraceae , Desnitrificação/genética , Ecótipo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Respiração , Rhodobacteraceae/genéticaRESUMO
Viruses play a key role in biogeochemical cycling and host mortality, metabolism, physiology and evolution in the ocean. Viruses that infect the globally abundant SAR11 bacteria (pelagiphages) were reported to be an important component of the marine viral communities. Our current knowledge of pelagiphages is based on a few studies and therefore is limited. In this study, 10 new pelagiphages were isolated and genomically characterized. These pelagiphages represent the first cultivated representatives of four viral lineages only found in metagenomic sequencing datasets previously. Many abundant environmental viral sequences, i.e., single-virus vSAG 37-F6 and several Global Ocean Viromes (GOV) viral populations, are now further confirmed with these pelagiphages. Viromic read mapping reveals that these new pelagiphages are globally distributed in the ocean and can be detected throughout the water column. Remarkably, isolation of these pelagiphages contributed up to 12% of all viromic reads annotated in the analysed viromes. Altogether, this study has greatly broadened our understanding of pelagiphages regarding their morphology, genetic diversity, infection strategies, and distribution pattern. The availability of these newly isolated pelagiphages and their genome sequences will allow us to further explore their infectivities and ecological strategies.
Assuntos
Bacteriófagos/crescimento & desenvolvimento , Oceanos e Mares , Água do Mar/virologia , Alphaproteobacteria/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Variação Genética , Genoma Viral/genética , Genômica , Água do Mar/microbiologia , Viroma/genéticaRESUMO
Prochlorococcus are the most abundant photosynthetic organisms in the modern ocean. A massive DNA loss event occurred in their early evolutionary history, leading to highly reduced genomes in nearly all lineages, as well as enhanced efficiency in both nutrient uptake and light absorption. The environmental landscape that shaped this ancient genome reduction, however, remained unknown. Through careful molecular clock analyses, we established that this Prochlorococcus genome reduction occurred during the Neoproterozoic Snowball Earth climate catastrophe. The lethally low temperature and exceedingly dim light during the Snowball Earth event would have inhibited Prochlorococcus growth and proliferation, and caused severe population bottlenecks. These bottlenecks are recorded as an excess of deleterious mutations accumulated across genomic regions and inherited by descendant lineages. Prochlorococcus adaptation to extreme environmental conditions during Snowball Earth intervals can be inferred by tracing the evolutionary paths of genes that encode key metabolic potential. Key metabolic innovation includes modified lipopolysaccharide structure, strengthened peptidoglycan biosynthesis, the replacement of a sophisticated circadian clock with an hourglass-like mechanism that resets daily for dim light adaption and the adoption of ammonia diffusion as an efficient membrane transporter-independent mode of nitrogen acquisition. In this way, the Neoproterozoic Snowball Earth event may have altered the physiological characters of Prochlorococcus, shaping their ecologically vital role as the most abundant primary producers in the modern oceans.
Assuntos
Prochlorococcus , Planeta Terra , Genoma Bacteriano , Oceanos e Mares , Filogenia , Prochlorococcus/genética , Prochlorococcus/metabolismo , Água do Mar/químicaRESUMO
Marine flavobacteria are specialists for polysaccharide degradation. They dominate in habitats enriched with polysaccharides, but are also prevalent in pelagic environments where polysaccharides are less available. These niches are likely occupied by distinct lineages, but evolutionary processes underlying their niche differentiation remain elusive. Here, genomic analyses and physiological assays indicate that the sister flavobacteria lineages Leeuwenhoekiella and Nonlabens likely explore polysaccharide-rich macroalgae and polysaccharide-poor pelagic niches respectively. Phylogenomic analyses inferred that the niche separation likely occurred anciently and coincided with increased sequence evolutionary rate in Nonlabens compared with Leeuwenhoekiella. Further analyses ruled out the known mechanisms likely driving evolutionary rate acceleration, including reduced selection efficiency, decreased generation time and increased mutation rate. In particular, the mutation rates were determined using an unbiased experimental method, which measures the present-day populations and may not reflect ancestral populations. These data collectively lead to a new hypothesis that an ancestral and transient mutation rate increase resulted in evolutionary rate increase in Nonlabens. This hypothesis was supported by inferring that gains and losses of genes involved in SOS response, a mechanism known to drive transiently increased mutation rate, coincided with evolutionary rate acceleration. Our analyses highlight the evolutionary mechanisms underlying niche differentiation of flavobacteria lineages.
Assuntos
Evolução Biológica , Flavobacteriaceae/genética , Microbiologia da Água , Organismos Aquáticos , Flavobacteriaceae/classificação , Flavobacterium/classificação , Flavobacterium/genética , FilogeniaRESUMO
Pseudomonas aeruginosa is a prevalent and pernicious pathogen equipped with extraordinary capabilities both to infect the host and to develop antimicrobial resistance (AMR). Monitoring the emergence of AMR high-risk clones and understanding the interplay of their pathogenicity and antibiotic resistance is of paramount importance to avoid resistance dissemination and to control P. aeruginosa infections. In this study, we report the identification of a multidrug-resistant (MDR) P. aeruginosa strain PA154197 isolated from a blood stream infection in Hong Kong. PA154197 belongs to a distinctive MLST550 clonal complex shared by two other international P. aeruginosa isolates VW0289 and AUS544. Comparative genome and transcriptome analysis of PA154197 with the reference strain PAO1 led to the identification of a variety of genetic variations in antibiotic resistance genes and the hyperexpression of three multidrug efflux pumps MexAB-OprM, MexEF-OprN, and MexGHI-OpmD in PA154197. Unexpectedly, the strain does not display a metabolic cost and a compromised virulence compared to PAO1. Characterizing its various physiological and virulence traits demonstrated that PA154197 produces a substantially higher level of the P. aeruginosa major virulence factor pyocyanin (PYO) than PAO1, but it produces a decreased level of pyoverdine and displays decreased biofilm formation compared with PAO1. Further analysis revealed that the secondary quorum-sensing (QS) system Pqs that primarily controls the PYO production is hyperactive in PA154197 independent of the master QS systems Las and Rhl. Together, these investigations disclose a unique, uncoupled QS mediated pathoadaptation mechanism in clinical P. aeruginosa which may account for the high pathogenic potentials and antibiotic resistance in the MDR isolate PA154197.
Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum , Animais , Caenorhabditis elegans/microbiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Ilhas Genômicas , Humanos , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Virulência/genética , Fatores de Virulência/genéticaRESUMO
The taxonomy of marine and non-marine organisms rarely overlap, but the mechanisms underlying this distinction are often unknown. Here, we predicted three major ocean-to-land transitions in the evolutionary history of Flavobacteriaceae, a family known for polysaccharide and peptide degradation. These unidirectional transitions were associated with repeated losses of marine signature genes and repeated gains of non-marine adaptive genes. This included various Na+ -dependent transporters, osmolyte transporters and glycoside hydrolases (GH) for sulfated polysaccharide utilization in marine descendants, and in non-marine descendants genes for utilizing the land plant material pectin and genes facilitating terrestrial host interactions. The K+ scavenging ATPase was repeatedly gained whereas the corresponding low-affinity transporter repeatedly lost upon transitions, reflecting K+ ions are less available to non-marine bacteria. Strikingly, the central metabolism Na+ -translocating NADH: quinone dehydrogenase gene was repeatedly gained in marine descendants, whereas the H+ -translocating counterpart was repeatedly gained in non-marine lineages. Furthermore, GH genes were depleted in isolates colonizing animal hosts but abundant in bacteria inhabiting other non-marine niches; thus relative abundances of GH versus peptidase genes among Flavobacteriaceae lineages were inconsistent with the marine versus non-marine dichotomy. We suggest that phylogenomic analyses can cast novel light on mechanisms explaining the distribution and ecology of key microbiome components.
Assuntos
Evolução Biológica , Ecossistema , Flavobacteriaceae/genética , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flavobacteriaceae/classificação , Flavobacteriaceae/enzimologia , Flavobacteriaceae/fisiologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Pectinas/metabolismo , Filogenia , Polissacarídeos/metabolismoRESUMO
Motivation: Metagenomics investigates the DNA sequences directly recovered from environmental samples. It often starts with reads assembly, which leads to contigs rather than more complete genomes. Therefore, contig binning methods are subsequently used to bin contigs into genome bins. While some clustering-based binning methods have been developed, they generally suffer from problems related to stability and robustness. Results: We introduce BMC3C, an ensemble clustering-based method, to accurately and robustly bin contigs by making use of DNA sequence Composition, Coverage across multiple samples and Codon usage. BMC3C begins by searching the proper number of clusters and repeatedly applying the k-means clustering with different initializations to cluster contigs. Next, a weight graph with each node representing a contig is derived from these clusters. If two contigs are frequently grouped into the same cluster, the weight between them is high, and otherwise low. BMC3C finally employs a graph partitioning technique to partition the weight graph into subgraphs, each corresponding to a genome bin. We conduct experiments on both simulated and real-world datasets to evaluate BMC3C, and compare it with the state-of-the-art binning tools. We show that BMC3C has an improved performance compared to these tools. To our knowledge, this is the first time that the codon usage features and ensemble clustering are used in metagenomic contig binning. Availability and implementation: The codes of BMC3C are available at http://mlda.swu.edu.cn/codes.php?name=BMC3C. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Algoritmos , Códon , Mapeamento de Sequências Contíguas , Metagenômica , Análise por Conglomerados , Biologia Computacional , Análise de Sequência de DNARESUMO
Marine Group II archaea are widely distributed in global oceans and dominate the total archaeal community within the upper euphotic zone of temperate waters. However, factors controlling the distribution of MGII are poorly delineated and the physiology and ecological functions of these still-uncultured organisms remain elusive. In this study, we investigated the planktonic MGII associated with particles and in free-living forms in the Pearl River Estuary (PRE) over a 10-month period. We detected high abundance of particle-associated MGII in PRE (up to â¼108 16S rRNA gene copies/l), which was around 10-fold higher than the free-living MGII in the same region, and an order of magnitude higher than previously reported in other marine environments. 10 salinity appeared to be a threshold value for these MGII because MGII abundance decreased sharply below it. Above 10 salinity, the abundance of MGII on the particles was positively correlated with phototrophs and MGII in the surface water was negatively correlated with irradiance. However, the abundances of those free-living MGII showed positive correlations with salinity and temperature, suggesting the different physiological characteristics between particle-attached and free-living MGIIs. A nearly completely assembled metagenome, MGIIa_P, was recovered using metagenome binning methods. Compared with the other two MGII genomes from surface ocean, MGIIa_P contained higher proportions of glycoside hydrolases, indicating the ability of MGIIa_P to hydrolyse glycosidic bonds in complex sugars in PRE. MGIIa_P is the first assembled MGII metagenome containing a catalase gene, which might be involved in scavenging reactive oxygen species generated by the abundant phototrophs in the eutrophic PRE. Our study presented the widespread and high abundance of MGII in the water columns of PRE, and characterized the determinant abiotic factors affecting their distribution. Their association with heterotrophs, preference for particles and resourceful metabolic traits indicate MGII might play a significant role in metabolising organic matters in the PRE and other temperate estuarine systems.
Assuntos
Adaptação Fisiológica/fisiologia , Archaea/genética , Archaea/metabolismo , Plâncton/crescimento & desenvolvimento , Rios/microbiologia , Archaea/classificação , Archaea/isolamento & purificação , China , Ecologia , Estuários , Metagenoma/genética , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Água do Mar/microbiologiaRESUMO
Acquisition of ecologically relevant genes is common among ocean bacteria, but whether it has a major impact on genome evolution in marine environments remains unknown. Here, we analyzed the core genomes of 16 phylogenetically diverse and ecologically relevant bacterioplankton lineages, each consisting of up to five genomes varying at the strain level. Statistical approaches identified from each lineage up to â¼50 loci showing anomalously high divergence at synonymous sites, which is best explained by recombination with distantly related organisms. The enriched gene categories in these outlier loci match well with the characteristics previously identified as the key phenotypes of these lineages. Examples are antibiotic synthesis and detoxification in Phaeobacter inhibens, exopolysaccharide production in Alteromonas macleodii, hydrocarbon degradation in Marinobacter hydrocarbonoclasticus, and cold adaptation in Pseudoalteromonas haloplanktis Intriguingly, the outlier loci feature polysaccharide catabolism in Cellulophaga baltica but not in Cellulophaga lytica, consistent with their primary habitat preferences in macroalgae and beach sands, respectively. Likewise, analysis of Prochlorococcus showed that photosynthesis-related genes listed in the outlier loci are found only in the high-light-adapted ecotype and not in the low-light adapted ecotype. These observations strongly suggest that recombination with distant relatives is a key mechanism driving the ecological diversification among marine bacterial lineages.IMPORTANCE Acquisition of new metabolic genes has been known as an important mechanism driving bacterial evolution and adaptation in the ocean, but acquisition of novel alleles of existing genes and its potential ecological role have not been examined. Guided by population genetic theories, our genomic analysis showed that divergent allele acquisition is prevalent in phylogenetically diverse marine bacterial lineages and that the affected loci often encode metabolic functions that underlie the known ecological roles of the lineages under study.
Assuntos
Adaptação Fisiológica/genética , Organismos Aquáticos/genética , Bactérias/genética , Genoma Bacteriano , Recombinação Homóloga , Alelos , Bactérias/metabolismo , Ecossistema , Ecótipo , Evolução Molecular , Loci Gênicos , Genômica , Filogenia , Prochlorococcus/genética , Água do Mar/microbiologiaRESUMO
About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles.
Assuntos
Ciclo do Carbono , Plâncton/metabolismo , Enxofre/metabolismo , Alcanossulfonatos/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Modelos Biológicos , Filogenia , Fitoplâncton/genética , Fitoplâncton/metabolismo , Plâncton/genética , Roseobacter/genética , Roseobacter/metabolismo , Água do Mar/microbiologia , Vitamina B 12/metabolismoRESUMO
The Roseobacter DC5-80-3 cluster (also known as the RCA clade) is among the most abundant bacterial lineages in temperate and polar oceans. Previous studies revealed two phylotypes within this cluster that are distinctly distributed in the Antarctic and other ocean provinces. Here, we report a nearly complete genome co-assembly of three closely related single cells co-occurring in the Antarctic, and compare it to the available genomes of the other phylotype from ocean regions where iron is more accessible but phosphorus and nitrogen are less. The Antarctic phylotype exclusively contains an operon structure consisting of a dicitrate transporter fecBCDE and an upstream regulator likely for iron uptake, whereas the other phylotype consistently carry a high-affinity phosphate pst transporter and the phoB-phoR regulatory system, a high-affinity ammonium amtB transporter, urea and taurine utilization systems. Moreover, the Antarctic phylotype uses proteorhodopsin to acquire light, whereas the other uses bacteriochlorophyll-a and the sulfur-oxidizing sox cluster for energy acquisition. This is potentially an iron-saving strategy for the Antarctic phylotype because only the latter two pathways have iron-requiring cytochromes. Therefore, the two DC5-80-3 phylotypes, while diverging by only 1.1% in their 16S rRNA genes, have evolved systematic differences in metabolism to support their distinct ecologies.
Assuntos
Ecótipo , Roseobacter/genética , Regiões Antárticas , Genoma Bacteriano , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologiaRESUMO
The genomic G+C content of ocean bacteria varies from below 30% to over 60%. This broad range of base composition is likely shaped by distinct mutational processes, recombination, effective population size, and selection driven by environmental factors. A number of studies have hypothesized that depletion of G/C in genomes of marine bacterioplankton cells is an adaptation to the nitrogen-poor pelagic oceans, but they failed to disentangle environmental factors from mutational biases and population history. Here, we reconstructed the evolutionary changes of bases at synonymous sites in genomes of two marine SAR11 populations and a freshwater counterpart with its evolutionary origin rooted in the marine lineage. Although they all have similar genome sizes, DNA repair gene repertoire, and base compositions, there is a stronger bias toward A/T changes, a reduced frequency of nitrogenous amino acids, and an exclusive occurrence of polyamine, opine, and taurine transport systems in the ocean populations, consistent with a greater nitrogen stress in surface oceans compared with freshwater lakes. Furthermore, the ratio of nonsynoymous to synonymous nucleotide diversity is not statistically distinguishable among these populations, suggesting that population history has a limited effect. Taken together, the ecological transition of SAR11 from ocean to freshwater habitats makes nitrogen more available to these organisms, and thus relaxation of purifying selection drove a genome-wide reduction in the frequency of G/C to A/T changes in the freshwater population.
Assuntos
Composição de Bases/genética , Genoma Bacteriano , Filogenia , Água do Mar/microbiologia , Seleção Genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Aminoácidos/genética , Sequência de Bases , Água Doce/microbiologia , Funções Verossimilhança , Nitrogênio/farmacologia , RNA Ribossômico 16S/genética , Estresse Fisiológico/efeitos dos fármacosRESUMO
Members of the marine Roseobacter clade are major participants in global carbon and sulfur cycles. While roseobacters are well represented in cultures, several abundant pelagic lineages, including SAG-O19, DC5-80-3, and NAC11-7, remain largely uncultivated and show evidence of genome streamlining. Here, we analyzed the partial genomes of three single cells affiliated with CHAB-I-5, another abundant but exclusively uncultivated Roseobacter lineage. Members of this lineage encode several metabolic potentials that are absent in streamlined genomes. Examples are quorum sensing and type VI secretion systems, which enable them to effectively interact with host and other bacteria. Further analysis of the CHAB-I-5 single-cell amplified genomes (SAGs) predicted that this lineage comprises members with relatively large genomes (4.1 to 4.4 Mbp) and a high fraction of noncoding DNA (10 to 12%), which is similar to what is observed in many cultured, nonstreamlined Roseobacter lineages. The four uncultured lineages, while exhibiting highly variable geographic distributions, together represent >60% of the global pelagic roseobacters. They are consistently enriched in genes encoding the capabilities of light harvesting, oxidation of "energy-rich" reduced sulfur compounds and methylated amines, uptake and catabolism of various carbohydrates and osmolytes, and consumption of abundant exudates from phytoplankton. These traits may define the global prevalence of the four lineages among marine bacterioplankton.
Assuntos
Genoma Bacteriano , Roseobacter/genética , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/metabolismo , Genômica , Filogenia , Roseobacter/classificação , Roseobacter/crescimento & desenvolvimento , Roseobacter/isolamento & purificaçãoRESUMO
Planktonic bacteria dominate surface ocean biomass and influence global biogeochemical processes, but remain poorly characterized owing to difficulties in cultivation. Using large-scale single cell genomics, we obtained insight into the genome content and biogeography of many bacterial lineages inhabiting the surface ocean. We found that, compared with existing cultures, natural bacterioplankton have smaller genomes, fewer gene duplications, and are depleted in guanine and cytosine, noncoding nucleotides, and genes encoding transcription, signal transduction, and noncytoplasmic proteins. These findings provide strong evidence that genome streamlining and oligotrophy are prevalent features among diverse, free-living bacterioplankton, whereas existing laboratory cultures consist primarily of copiotrophs. The apparent ubiquity of metabolic specialization and mixotrophy, as predicted from single cell genomes, also may contribute to the difficulty in bacterioplankton cultivation. Using metagenome fragment recruitment against single cell genomes, we show that the global distribution of surface ocean bacterioplankton correlates with temperature and latitude and is not limited by dispersal at the time scales required for nucleotide substitution to exceed the current operational definition of bacterial species. Single cell genomes with highly similar small subunit rRNA gene sequences exhibited significant genomic and biogeographic variability, highlighting challenges in the interpretation of individual gene surveys and metagenome assemblies in environmental microbiology. Our study demonstrates the utility of single cell genomics for gaining an improved understanding of the composition and dynamics of natural microbial assemblages.
Assuntos
Bactérias/classificação , Genoma Bacteriano , Biologia Marinha , Plâncton/classificação , Microbiologia da Água , Bactérias/genética , Geografia , Oceanos e Mares , Plâncton/genéticaRESUMO
Genome-reduced bacteria constitute most of the cells in surface-ocean bacterioplankton communities. Their extremely large census population sizes (N c) have been unfoundedly translated to huge effective population sizes (N e)-the size of an ideal population carrying as much neutral genetic diversity as the actual population. As N e scales inversely with the strength of genetic drift, constraining the magnitude of N e is key to evaluating whether natural selection can overcome the power of genetic drift to drive evolutionary events. Determining the N e of extant species requires measuring the genomic mutation rate, a challenging step for most genome-reduced bacterioplankton lineages. Results for genome-reduced Prochlorococcus and CHUG are surprising-their N e values are an order of magnitude lower than those of less abundant lineages carrying large genomes, such as Ruegeria and Vibrio. As bacterioplankton genome reduction commonly occurred in the distant past, appreciating their population genetic mechanisms requires constraining their ancient N e values by other methods.
RESUMO
In the oligotrophic sunlit ocean, the most abundant free-living planktonic bacterial lineages evolve convergently through genome reduction. The cyanobacterium Prochlorococcus responsible for 10% global oxygen production is a prominent example. The dominant theory known as "genome streamlining" posits that they have extremely large effective population sizes (Ne) such that selection for metabolic efficiency acts to drive genome reduction. Because genome reduction largely took place anciently, this theory builds on the assumption that their ancestors' Ne was similarly large. Constraining Ne for ancient ancestors is challenging because experimental measurements of extinct organisms are impossible and alternatively reconstructing ancestral Ne with phylogenetic models gives large uncertainties. Here, we develop a new strategy that leverages agent-based modeling to simulate the changes in the genome-wide ratio of radical to conservative nonsynonymous nucleotide substitution rate (dR/dC) in a possible range of Ne in ancestral populations. This proxy shows expected increases with decreases of Ne only when Ne falls to about 10 k - 100 k or lower, magnitudes characteristic of Ne of obligate endosymbiont species where drift drives genome reduction. Our simulations therefore strongly support a scenario where the primary force of Prochlorococcus genome reduction is drift rather than selection.
Assuntos
Prochlorococcus , Filogenia , Prochlorococcus/genética , Densidade Demográfica , Genoma , Plâncton , Genoma BacterianoRESUMO
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.