Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
BMC Biol ; 20(1): 200, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100845

RESUMO

BACKGROUND: Interspecific postzygotic reproduction isolation results from large genetic divergence between the subgenomes of established hybrids. Polyploidization immediately after hybridization may reset patterns of homologous chromosome pairing and ameliorate deleterious genomic incompatibility between the subgenomes of distinct parental species in plants and animals. However, the observation that polyploidy is less common in vertebrates raises the question of which factors restrict its emergence. Here, we perform analyses of the genome, epigenome, and gene expression in the nascent allotetraploid lineage (2.95 Gb) derived from the intergeneric hybridization of female goldfish (Carassius auratus, 1.49 Gb) and male common carp (Cyprinus carpio, 1.42 Gb), to shed light on the changes leading to the stabilization of hybrids. RESULTS: We firstly identify the two subgenomes derived from the parental lineages of goldfish and common carp. We find variable unequal homoeologous recombination in somatic and germ cells of the intergeneric F1 and allotetraploid (F22 and F24) populations, reflecting high plasticity between the subgenomes, and rapidly varying copy numbers between the homoeolog genes. We also find dynamic changes in transposable elements accompanied by genome merger and duplication in the allotetraploid lineage. Finally, we observe the gradual decreases in cis-regulatory effects and increases in trans-regulatory effects along with the allotetraploidization, which contribute to increases in the symmetrical homoeologous expression in different tissues and developmental stages, especially in early embryogenesis. CONCLUSIONS: Our results reveal a series of changes in transposable elements, unequal homoeologous recombination, cis- and trans-regulations (e.g. DNA methylation), and homoeologous expression, suggesting their potential roles in mediating adaptive stabilization of regulatory systems of the nascent allotetraploid lineage. The symmetrical subgenomes and homoeologous expression provide a novel way of balancing genetic incompatibilities, providing a new insight into the early stages of allopolyploidization in vertebrate evolution.


Assuntos
Carpas , Cyprinidae , Animais , Cyprinidae/genética , Elementos de DNA Transponíveis , Hibridização Genética , Poliploidia
2.
Proteomics ; 22(4): e2100115, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713569

RESUMO

Allotetraploid is a new species produced by distant hybridization between red crucian carp (Carassius auratus red var., abbreviated as RCC) and common carp (Cyprinus carpio L., abbreviated as CC). There is a significant difference in growth rate between allotetraploid and its parents. However, the underlying molecular mechanism is largely unknown. In this study, to find direct evidence associated with metabolism and growth rate in protein level, we performed quantitative proteomics analysis on liver tissues between allotetraploid and its parents. A total of 2502 unique proteins were identified and quantified by SWATH-MS in our proteomics profiling. Subsequently, comprehensive bioinformatics analyses including gene ontology enrichment analysis, pathway and network analysis, and protein-protein interaction analysis (PPI) were conducted based on differentially expressed proteins (DEPs) between allotetraploid and its parents. The results revealed several significant DEPs involved in metabolism pathways in liver. More specifically, the integrative analysis highlighted that the DEPs ACSBG1, OAT, and LDHBA play vital roles in metabolism pathways including "pentose phosphate pathway," "TCA cycle," and "glycolysis and gluconeogenesis." These could directly affect the growth rate in fresh water fishes by regulating the metabolism, utilization, and exchange of substance and energy. Since the liver is the central place for metabolism activity in animals, we firstly established the comprehensive and quantitative proteomics knowledge base for liver tissue from freshwater fishes, our study may serve as an irreplaceable reference for further studies regarding fishes' culture and growth.


Assuntos
Carpas , Animais , Carpa Dourada/genética , Fígado , Proteômica
3.
Genome Res ; 29(11): 1805-1815, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31649058

RESUMO

Hybridization drives rapid speciation by shaping novel genotypic and phenotypic profiles. Genomic incompatibility and transcriptome shock have been observed in hybrids, although this is rarer in animals than in plants. Using the newly sequenced genomes of the blunt snout bream (Megalobrama amblycephala [BSB]) and the topmouth culter (Culter alburnus [TC]), we focused on the sequence variation and gene expression changes in the reciprocal intergeneric hybrid lineages (F1-F3) of BSB × TC. A genome-wide transcriptional analysis identified 145-974 expressed recombinant genes in the successive generations of hybrid fish, suggesting the rapid emergence of allelic variation following hybridization. Some gradual changes of gene expression with additive and dominance effects and various cis and trans regulations were observed from F1 to F3 in the two hybrid lineages. These asymmetric patterns of gene expression represent the alternative strategies for counteracting deleterious effects of the subgenomes and improving adaptability of novel hybrids. Furthermore, we identified positive selection and additive expression patterns in transforming growth factor, beta 1b (tgfb1b), which may account for the morphological variations of the pharyngeal jaw in the two hybrid lineages. Our current findings provide insights into the evolution of vertebrate genomes immediately following hybridization.


Assuntos
Alelos , Cyprinidae/genética , Hibridização Genética , Animais , Feminino , Masculino , Polimorfismo Genético , Análise de Sequência/métodos , Especificidade da Espécie
4.
Fish Shellfish Immunol ; 120: 620-632, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968709

RESUMO

FerL, a multifunctional iron-storage polypeptide, not only exhibited a regulatory role in iron metabolism, but also participated in the regulation of fish immunity. In this study, ORF sequence of WR-FerL was 522 bp, encoding 173 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-FerL was detected in spleen. A. hydrophila challenge and LPS stimulation could sharply enhance WR-FerL mRNA expression in tissues and fish cells, respectively. Purified WR-FerL fusion peptide exhibited in vitro binding activity to A. hydrophila and endotoxin, limited bacterial dissemination to tissues as well as attenuated A. hydrophila-induced production of pro-inflammatory cytokines. Moreover, WR-FerL overexpression could abrogate NF-κB and TNFα promoter activity in fish cells. These results indicated that WR-FerL could play an important role in host defense against A. hydrophila infection.


Assuntos
Carpas , Ferritinas , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila , Animais , Carpas/genética , Carpas/imunologia , Ferritinas/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata/genética , Ferro
5.
Fish Shellfish Immunol ; 120: 547-559, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923115

RESUMO

Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila infection could decrease blood cell numbers, promote blood cell damage as well as alter the levels of alkaline phosphatase (ALP), lysozyme (LZM), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in immune-related tissues of red crucian carp (RCC, 2 N = 100) and triploid cyprinid fish (3 N fish, 3 N = 150). In addition, the significant alternation of antioxidant status was observed in PBMCs isolated from RCC and 3 N following LPS stimulation. The core differential expression genes (DEGs) involved in apoptosis, immunity, inflammation and cellular signals were co-expressed differentially in RCC and 3 N following A. hydrophila challenge. NOD-like receptor (NLR) signals appeared to play a critical role in A. hydrophila-infected fish. DEGs of NLR signals in RCCah vs RCCctl were enriched in caspase-1-dependent Interleukin-1ß (IL-1ß) secretion, interferon (IFN) signals as well as cytokine activation, while DEGs of NLR signals in 3Nah vs 3Nctl were enriched in caspase-1-dependent IL-1ß secretion and antibacterial autophagy. These results highlighted the differential signal regulation of different ploidy cyprinid fish to cope with bacterial infection.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Transcriptoma , Aeromonas hydrophila , Animais , Antioxidantes , Células Sanguíneas , Carpas/genética , Carpas/imunologia , Caspases , Suplementos Nutricionais , Resistência à Doença , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata , Ploidias
6.
Fish Shellfish Immunol ; 118: 369-384, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34571155

RESUMO

Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila challenge could promote the erythrocyte hemolysis, increase free hemoglobin (FHB) level and generate malondialdehyde (MDA) production in plasma but decrease the levels of total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (ALP) and lysozyme (LZM) of red crucian carp (RCC, 2 N = 100) and triploid hybrid fish (3 N fish, 3 N = 150) following A. hydrophila challenge. Elevated expression levels of heat shock protein 90 alpha (HSP90α), matrix metalloproteinase 9 (MMP-9), free fatty acid receptor 3 (FFAR3), paraoxonase 2 (PON2) and cytosolic phospholipase A2 (cPLA2) were observed in A. hydrophila-infected fish. In addition, A. hydrophila challenge could significantly increase expressions of cortisol, leucine, isoleucine, glutamate and polyunsaturated fatty acids (PUFAs) in RCC and 3 N, while glycolysis and tricarboxylic acid cycle appeared to be inactive. We identified differential fatty acid derivatives and their metabolic networks as crucial biomarkers from metabolic profiles of different ploidy cyprinid fish subjected to A. hydrophila infection. These results highlighted the comparative metabolic strategy of different ploidy cyprinid fish against bacterial infection.


Assuntos
Carcinoma de Células Renais , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Neoplasias Renais , Aeromonas hydrophila , Animais , Carpas/genética , Eritrócitos , Proteínas de Peixes/genética , Carpa Dourada , Infecções por Bactérias Gram-Negativas/veterinária , Hemólise , Triploidia
7.
Fish Shellfish Immunol ; 116: 1-11, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174452

RESUMO

NK-lysin, an effector of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), not only exhibits cytotoxic effect in fish cells, but also participates in the immune defense against pathogenic infection. In this study, ORF sequences of RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin were 369 bp. Tissue-specific analysis revealed that the highest expressions of RCC-NK-lysin and WCC-NK-lysin were observed in gill, while the peaked level of WR-NK-lysin mRNA was observed in spleen. A. hydrophila infection sharply increased RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin mRNA expression in liver, trunk kidney and spleen. In addition, elevated levels of NK-lysin mRNA were observed in cultured fin cell lines of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) after Lipopolysaccharide (LPS) challenge. RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin exerted regulatory roles in inducing ROS generation, modulating mitochondrial membrane potential, decreasing fish cell viability and antagonizing survival signalings, respectively. RCC/WCC/WR-NK-lysin-overexpressing fish could up-regulate expressions of inflammatory cytokines and decrease bacterial loads in spleen. These results indicated that NK-lysin in hybrid fish contained close sequence similarity to those of its parents, possessing the capacities of cytotoxicity and immune defense against bacterial infection.


Assuntos
Aeromonas hydrophila , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Proteolipídeos/imunologia , Nadadeiras de Animais/citologia , Animais , Carpas/genética , Sobrevivência Celular , Células Cultivadas , Quimera , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Expressão Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Rim/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Potencial da Membrana Mitocondrial , Proteolipídeos/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/metabolismo , Baço/microbiologia
8.
BMC Genet ; 21(1): 56, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32456607

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

9.
Fish Shellfish Immunol ; 98: 551-563, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31981776

RESUMO

Hepcidin, a multifunctional hormone oligopeptide, not only exhibits a regulatory role in iron metabolism, but also participates in the regulation of teleostean immunity. In this study, ORF sequence of WR-hepcidin was 258 bp and encoded 85 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-hepcidin was observed in liver. Aeromonas hydrophila challenge can sharply increased WR-hepcidin mRNA expression in liver, trunk kidney and spleen. The purified WR-hepcidin fusion peptide can directly bind to A. hydrophila and Streptococcus agalactiae, reduce the relative bacterial activity, limit bacterial growth and attenuate their dissemination to tissues in vivo. In addition, the treatment of WR-hepcidin fusion protein can diminish the production of pro-inflammatory cytokines. These results indicated that WR-hepcidin can play a negative regulatory role in bacteria-stimulated pro-inflammatory cytokines production and MyD88-IRAK4 activation.


Assuntos
Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Carpa Dourada/genética , Infecções por Bactérias Gram-Negativas/veterinária , Hepcidinas/química , Aeromonas hydrophila , Animais , Feminino , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Hibridização Genética , Masculino
10.
BMC Genet ; 20(1): 80, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31646976

RESUMO

BACKGROUND: Bleeker's yellow tail (Xenocypris davidi Bleeker, YT) and topmouth culter (Culter alburnus Basilewsky, TC) are both famous and important economic freshwater fish in China. YT, a kind of omnivorous fish, has strong resistance. TC, a kind of carnivorous fish, has high-quality meat but poor resistance. Distant hybridization can integrate the advantages of both parents. There has been no previous report regarding hybrid fish derived from female YT × male TC. It is expected that hybridization of these two kinds of fish will result in F1 hybrids with improved characteristics, such as faster growth rate, stronger resistance, and high-quality meat, which are of great significance in fish genetic breeding. RESULTS: In this study, we investigated the main biological characteristics of diploid hybrid fish derived from female YT × male TC. The hybrids had an intermediate number of upper lateral line scales between those for YT and TC. The hybrids were diploids with 48 chromosomes and had the same karyotype formula as their parents. The hybrids generated variations in 5S rDNA (designated class IV: 212 bp) and lost specific 5S rDNA derived from the maternal parent (designated class II: 221 bp), which might be related to hybridization. In terms of reproductive traits, all the tested female hybrids exhibited normal gonadal development, and the two-year-old F1 females produced mature eggs. However, all the tested testes of the male hybrids could not produce mature sperm. It is possible that the hybrid lineage will be established by back-crossing the fertile female hybrids and their parents. CONCLUSIONS: Obtaining a fertile female hybrid fish made the creation of a new type of fish possible, which was significant in fish genetic breeding.


Assuntos
Cyprinidae/fisiologia , Locos de Características Quantitativas , RNA Ribossômico 5S/genética , Animais , Cyprinidae/genética , Diploide , Resistência à Doença , Feminino , Deleção de Genes , Hibridização Genética , Masculino
11.
BMC Genet ; 20(1): 87, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779581

RESUMO

BACKGROUND: Distant hybridization can generate changes in phenotypes and genotypes that lead to the formation of new hybrid lineages with genetic variation. In this study, the establishment of two bisexual fertile carp lineages, including the improved diploid common carp (IDC) lineage and the improved diploid scattered mirror carp (IDMC) lineage, from the interspecific hybridization of common carp (Cyprinus carpio, 2n = 100) (♀) × blunt snout bream (Megalobrama amblycephala, 2n = 48) (♂), provided a good platform to investigate the genetic relationship between the parents and their hybrid progenies. RESULT: In this study, we investigated the genetic variation of 12 Hox genes in the two types of improved carp lineages derived from common carp (♀) × blunt snout bream (♂). Hox gene clusters were abundant in the first generation of IDC, but most were not stably inherited in the second generation. In contrast, we did not find obvious mutations in Hox genes in the first generation of IDMC, and almost all the Hox gene clusters were stably inherited from the first generation to the second generation of IDMC. Interestingly, we found obvious recombinant clusters of Hox genes in both improved carp lineages, and partially recombinant clusters of Hox genes were stably inherited from the first generation to the second generation in both types of improved carp lineages. On the other hand, some Hox genes were gradually becoming pseudogenes, and some genes were completely pseudogenised in IDC or IDMC. CONCLUSIONS: Our results provided important evidence that distant hybridization produces rapid genomic DNA changes that may or may not be stably inherited, providing novel insights into the function of hybridization in the establishment of improved lineages used as new fish resources for aquaculture.


Assuntos
Carpas/fisiologia , Variação Genética , Carpa Dourada/fisiologia , Proteínas de Homeodomínio/genética , Animais , Carpas/genética , Evolução Molecular , Feminino , Proteínas de Peixes/genética , Carpa Dourada/genética , Hibridização Genética , Masculino , Família Multigênica , Análise de Sequência de DNA/veterinária
12.
BMC Genet ; 20(1): 3, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616510

RESUMO

BACKGROUND: Grass carp (Ctenopharyngodon idellus, GC), as the highest-output fish in China, is economically important. The production of gynogenetic grass carp (GGC) will provide important germplasm resource for producing improved GC. At present, knowledge regarding the heterologous sperm DNA in gynogenetic offspring is little. Thus, revealing paternal DNA in GGC at the molecular level would be highly significant for fish genetic breeding. RESULT: In this study, ultraviolet-treated sperm of koi carp (Cyprinus carpio haematopterus, KOC, 2n = 100), was used to activate the eggs of GC (2n = 48). Afterwards, cold shock (0-4 °C) was administered for 12 min to double the chromosomes, resulting in GGC. No significant difference (p > 0.05) was found between GGC and GC in appearance, erythrocytes size and chromosome numbers. However, at the molecular level, a specific microsatellite DNA fragment (MFW1-gynogenetic grass carp, MFW1-G) derived from the paternal parent KOC was found to be transmitted into GGC. CONCLUSIONS: For the first time, this study provided an evidence at the molecular level that the DNA fragment derived from the paternal parent occurred in GGC. This finding is of great significance for fish genetic breeding.


Assuntos
Carpas/genética , Carpas/fisiologia , DNA/genética , Pai , Reprodução Assexuada/genética , Animais , Cromossomos/genética , Genômica , Masculino , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase
13.
Proc Natl Acad Sci U S A ; 113(5): 1327-32, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26768847

RESUMO

Polyploidy is much rarer in animals than in plants but it is not known why. The outcome of combining two genomes in vertebrates remains unpredictable, especially because polyploidization seldom shows positive effects and more often results in lethal consequences because viable gametes fail to form during meiosis. Fortunately, the goldfish (maternal) × common carp (paternal) hybrids have reproduced successfully up to generation 22, and this hybrid lineage permits an investigation into the genomics of hybridization and tetraploidization. The first two generations of these hybrids are diploids, and subsequent generations are tetraploids. Liver transcriptomes from four generations and their progenitors reveal chimeric genes (>9%) and mutations of orthologous genes. Characterizations of 18 randomly chosen genes from genomic DNA and cDNA confirm the chimera. Some of the chimeric and differentially expressed genes relate to mutagenesis, repair, and cancer-related pathways in 2nF1. Erroneous DNA excision between homologous parental genes may drive the high percentage of chimeric genes, or even more potential mechanisms may result in this phenomenon. Meanwhile, diploid offspring show paternal-biased expression, yet tetraploids show maternal-biased expression. These discoveries reveal that fast and unstable changes are mainly deleterious at the level of transcriptomes although some offspring still survive their genomic abnormalities. In addition, the synthetic effect of genome shock might have resulted in greatly reduced viability of 2nF2 hybrid offspring. The goldfish × common carp hybrids constitute an ideal system for unveiling the consequences of intergenomic interactions in hybrid vertebrate genomes and their fertility.


Assuntos
Cruzamentos Genéticos , Carpa Dourada/genética , Ploidias , Animais , Cromossomos , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente
14.
Biol Reprod ; 96(4): 907-920, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340181

RESUMO

Sperm motility is an important standard to measure the fertility of male. In our previous study, we found that the diploid spermatozoa from allotetraploid hybrid (4nAT) had longer durations of rapid and slow progressive motility than haploid spermatozoa from common carp (COC). In this study, to explore sperm motility-related molecular mechanisms, we compared the testis tissues transcriptomes from 2-year-old male COC and 4nAT. The RNA-seq data revealed that 2985 genes were differentially expressed between COC and 4nAT, including 2216 upregulated and 769 downregulated genes in 4nAT. Some differentially expressed genes, such as tubulin genes, dynein, axonemal, heavy chain(dnah) genes, mitogen-activated protein kinase(mapk) genes, tektin 4, FOX transcription factors, proteasome genes, and ubiquitin carboxyl-terminal hydrolase(uchl) genes, are involved in the regulation of cell division, flagellar and ciliary motility, gene transcription, cytoskeleton, energy metabolism, and the ubiquitin-proteasome system, suggesting that these genes were related to sperm motility of the 4nAT. We confirmed the differential expression of 12 such genes in 4nAT by quantitative PCR. By western blotting, we also confirmed increased expression of Uchl3 in 4nAT testis. In addition, we identified 1915 and 2551 predicted long noncoding RNA (lncRNA) transcripts from testis tissue transcriptomes of COC and 4nAT, respectively. Of these, 1575 lncRNAs were specifically expressed in 4nAT and 939 were specifically expressed in COC. This study provides insights into the transcriptome profile of testis tissues from diploid and tetraploid, which are useful for research on regulatory mechanisms behind sperm motility in male polyploidy.


Assuntos
Cyprinidae/genética , Cyprinidae/fisiologia , Regulação da Expressão Gênica/fisiologia , Ploidias , Motilidade dos Espermatozoides/fisiologia , Testículo/metabolismo , Animais , Masculino , Espermatozoides
15.
Biol Reprod ; 94(2): 35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26674567

RESUMO

The generation of diploid spermatozoa is essential for the continuity of tetraploid lineages. The DNA content of diploid spermatozoa from allotetraploid hybrids of red crucian carp and common carp was nearly twice as great as that of haploid spermatozoa from common carp, and the durations of rapid and slow progressive motility were longer. We performed comparative proteomic analyses to measure variations in protein composition between diploid and haploid spermatozoa. Using two-dimensional electrophoresis followed by liquid chromatography tandem mass spectrometry, 21 protein spots that changed in abundance were analyzed. As the common carp and the allotetraploid hybrids are not fully sequenced organisms, we identified proteins by Mascot searching against the National Center for Biotechnology Information non-redundant (NR) protein database for the zebrafish (Danio rerio), and verified them against predicted homologous proteins derived from transcriptomes of the testis. Twenty protein spots were identified successfully, belonging to four gene ontogeny categories: cytoskeleton, energy metabolism, the ubiquitin-proteasome system, and other functions, indicating that these might be associated with the variation in diploid spermatozoa. This categorization of variations in protein composition in diploid spermatozoa will provide new perspectives on male polyploidy. Moreover, our approach indicates that transcriptome data are useful for proteomic analyses in organisms lacking full protein sequences.


Assuntos
Carpas/fisiologia , Diploide , Poliploidia , Espermatozoides/fisiologia , Testículo/fisiologia , Animais , Masculino , Proteômica , Espermatozoides/citologia , Testículo/citologia
16.
BMC Genet ; 17(1): 150, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27919229

RESUMO

BACKGROUND: Nucleolar dominance is an epigenetic phenomenon that occurs in interspecific hybrids and involves the expression of 45S rRNA genes inherited from one progenitor due to the silencing of the other progenitor's rRNA genes. In this paper, changes in the genetics and expression of 45S rRNA genes in F1 and F2 hybrid progeny of blunt snout bream (BSB, Megalobrama amblycephala) × topmouth culter (TC, Culter alburnus) are investigated. RESULTS: The 45S rDNA loci were analyzed by cloning, RT-PCR and sequencing methods. The results show that nucleolar dominance patterns differ in the F1 and F2 hybrids. In the F1 hybrids of BSB × TC, all the tested individuals inherited and expressed the 45S rRNA genes of both BSB and TC, indicating that nucleolar dominance is not established in the F1 hybrids. However, in the F2 hybrids of BSB × TC, five patterns are observed. Pattern 1 inherits and expresses only the 45S rRNA gene of BSB. Pattern 2 inherits the 45S rRNA gene from both BSB and TC, but only expresses the 45S rRNA of BSB. Pattern 3 inherits and expresses the 45S rRNA gene from both BSB and TC. Pattern 4 inherits the 45S rRNA gene from both BSB and TC, but only expresses the 45S rRNA gene of TC. Pattern 5 inherits and expresses only the 45S rRNA gene of TC. CONCLUSIONS: Nucleolar dominance shows distinctive patterns in intergeneric hybrids of BSB × TC. It is not established in F1 hybrids and is random in F2 hybrids. This study provides new insights into the phenomenon of nucleolar dominance in genetic hybrids in vertebrates.


Assuntos
Nucléolo Celular/genética , Impressão Genômica , Perciformes/genética , Animais , Clonagem Molecular , Hibridização Genética , RNA Ribossômico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
17.
BMC Genet ; 16: 68, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26108606

RESUMO

BACKGROUND: Androgenesis is a unique and rarely encountered reproductive mode in which the offspring only inherit the paternal nuclear genome, resulting in relatively few viable individuals. RESULTS: In this study, a super male (YY) crucian carp was obtained by androgenesis with the diploid sperm of autotetraploid crucian carp (4n = 200). Flow cytometry assay confirmed the fish was diploid. The scanning electron microscopy and flow cytometry analysis results of sperm revealed that the YY crucian carp produced unreduced diploid sperm. To prove the special reproductive characteristic and homozygosity of the YY crucian carp, three rounds of hybridization experiments were performed. First, self-crossing between female androgenic progenies and YY crucian carp generated all male tetraploids. Then, hybridization of female red crucian carp (2n = 100) and female autotetraploid fish (4n = 200) with YY crucian carp produced all male triploids and all male tetraploids, respectively. CONCLUSIONS: This is the first time reported producing a viable diploid homozygous YY fish with unreduced diploid sperm of the autotetraploid fish, which were derived from distant hybridization. These results will not only help explaining the sex determination mechanism in teleost fish, but also play a significant role in genetic breeding in aquaculture.


Assuntos
Carpas/genética , Espermatozoides/metabolismo , Tetraploidia , Triploidia , Animais , Carpas/anatomia & histologia , Cruzamentos Genéticos , Diploide , Feminino , Hibridização Genética , Masculino , Espermatozoides/ultraestrutura
19.
Biol Reprod ; 91(4): 93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25165120

RESUMO

The establishment of the tetraploid organism is difficult but useful in genetics and breeding. In the present study, we have artificially established an autotetraploid fish line (F2-F8) derived from the distant hybridization of Carassius auratus red var. (RR, 2n = 100) (female) × Megalobrama amblycephala (BB, 2n = 48) (male). The autotetraploid line (F2-F8) possess four sets of chromosomes from red crucian carp (RRRR, 4n = 200) and produce diploid ova and diploid sperm, which maintains the formation of the autotetraploid line. The F2 of the autotetraploid fish result from the fertilization of the autodiploidy diploid eggs and diploid sperm from the females and males of F1 hybrids (RRBB, 4n = 148), which exhibit abnormal chromosome behavior during meiosis as revealed by gynogenesis and backcrossing. This is the first report concerning the establishment of an autotetraploid fish line derived from distant hybridization. The autotetraploid fish line provides an important gamete source for the production of triploids and tetraploids. The autotetraploid fish line also provides an ideal system to investigate the poorly understood mechanisms that drive diploidization in autotetraploids and to study the hybrid progenies' characteristics, including the appearance of new traits that promote a diversity of traits and facilitate adaptation.


Assuntos
Cyprinidae/genética , Hibridização Genética , Ploidias , Animais , Cyprinidae/fisiologia , DNA/genética , Feminino , Hibridização in Situ Fluorescente , Cariótipo , Masculino
20.
BMC Genet ; 15: 33, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24628745

RESUMO

BACKGROUND: Distant hybridization can generate transgressive hybrid phenotypes that lead to the formation of new populations or species with increased genetic variation. In this study, we produced an experimental hybrid goldfish (EG) by distant crossing of red crucian carp (Carassius auratus) × common carp (Cyprinus carpio) followed by gynogenesis. RESULTS: We evaluated the phenotype, ploidy level, gonadal structure, and 5S rDNA of the EG. Diploid EG possessed a high level of genetic variation, which was stably inherited. In particular, the EG combined transgressive phenotypes, including a forked tail and shortened caudal peduncle, traits that are present in common goldfish. The EG and common goldfish share a number of morphological and genetic similarities. CONCLUSIONS: Using the EG, we provide new evidence that goldfish originated from hybridization of red crucian carp × common carp.


Assuntos
Carpas/genética , Evolução Molecular , Especiação Genética , Carpa Dourada/genética , Hibridização Genética , Animais , Carpas/anatomia & histologia , Quimera/anatomia & histologia , Quimera/genética , Feminino , Carpa Dourada/anatomia & histologia , Gônadas/anatomia & histologia , Cariótipo , Masculino , Fenótipo , Ploidias , RNA Ribossômico 5S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA