RESUMO
The efficacy of the dendritic cell (DC) has failed to meet expectations thus far, and crucial problems such as the immature state of DCs, low targeting efficiency, insufficient number of dendritic cells, and microenvironment are still the current focus. To address these problems, we developed two self-assembling peptides, RLDI and RQDT, that mimic extracellular matrix (ECM). These peptides can be self-assembled into highly ordered three-dimensional nanofiber scaffold structures, where RLDI can form gelation immediately. In addition, we found that RLDI and RQDT enhance the biological function of DCs, including releasing antigens sustainably, adhering to DCs, promoting the maturation of DCs, and increasing the ability of DC antigen presentation. Moreover, peptide hydrogel-based DC treatment significantly achieved prophylactic and treatment effects on colon cancer. These results have certain implications for the design of new broad-spectrum vaccines in the future.
Assuntos
Células Dendríticas , Hidrogéis , Hidrogéis/farmacologia , Imunidade Celular , Peptídeos/farmacologia , Peptídeos/química , Linfócitos TRESUMO
Self-assembly peptide nanotechnology has attracted much attention due to its regular and orderly structure and diverse functions. Most of the existing self-assembly peptides can form aggregates with specific structures only under specific conditions and their assembly time is relatively long. They have good biocompatibility but no immunogenicity. To optimize it, a self-assembly peptide named DRF3 was designed. It contains a hydrophilic and hydrophobic surface, using two N-terminal arginines, leucine, and two c-terminal aspartate and glutamic acid. Meanwhile, the c-terminal of the peptide was amidated, so that peptide segments were interconnected to increase diversity. Its characterization, biocompatibility, controlled release effect on antigen, immune cell recruitment ability, and antitumor properties were examined here. Congo red/aniline blue staining revealed that peptide hydrogel DRF3 could be immediately gelled in PBS. The stable ß-sheet secondary structure of DRF3 was confirmed by circular dichroism spectrum and IR spectra. The observation results of cryo-scanning electron microscopy, transmission electron microscopy, and atomic force microscopy demonstrated that DRF3 formed nanotubule-like and vesicular structures in PBS, and these structures interlaced with each other to form ordered three-dimensional nanofiber structures. Meanwhile, DRF3 showed excellent biocompatibility, could sustainably and slowly release antigens, recruit dendritic cells and promote the maturation of dendritic cells (DCs) in vitro. In addition, DRF3 has a strong inhibitory effect on clear renal cell carcinoma (786-0). These results provide a reliable basis for the application of peptide hydrogels in biomedical and preclinical trials.
Assuntos
Células Dendríticas/imunologia , Hidrogéis/química , Peptídeos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Materiais Biocompatíveis/química , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Vermelho Congo/química , Microscopia Crioeletrônica , Preparações de Ação Retardada , Fluoresceína-5-Isotiocianato/química , Humanos , Hidrogéis/farmacocinética , Espectrometria de Massas , Camundongos , Microscopia de Força Atômica , Nanofibras/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Estrutura Secundária de ProteínaRESUMO
The enhancement of conventional liposome and lipid nanoparticle (LNP) methodologies in the formulation and deployment of messenger RNA (mRNA) vaccines necessitates further refinement to augment both their effectiveness and biosafety profiles. Additionally, researching these innovative delivery carrier materials represents both a prominent focus and a significant challenge in the current scientific landscape. Here we designed new chiral self-assembling peptides as the delivery carrier for RNA vaccines to study the underlying mechanisms in the feline infectious peritonitis virus (FIPV) model system. Firstly, we successfully transcribed mature enhanced green fluorescent protein (EGFP) mRNA and feline infectious peritonitis virus nucleocapsid (FIPV N) mRNA in vitro from optimized vectors. Subsequently, we developed chiral self-assembling peptide-1 (CSP-1) and chiral self-assembling peptide-2 (CSP-2) peptides, taking into account the physical and chemical characteristics of nucleic acid molecules as well as the principles of self-assembling peptides, with the aim of improving the delivery efficiency of mRNA molecule complexes. We determined the optimal coating ratio between CSP and mRNA by electrophoretic mobility shift assay. We found that the peptides and mRNA complexes can protect the mRNA from RNase A enzyme and efficiently deliver mRNA into cells for target antigen proteins expression. Animal experiments confirmed that CSP-1/mRNA complex can effectively trigger immune response mechanisms involving IFN-γ and T cell activation. It can also stimulate CD4+ and CD8+ T cell proliferation and induce serum antibody titers up to 10,000 times higher. And no pathological changes were observed by immunohistochemistry in liver, spleen, and kidney, indicating that CSP-1 may be a safe and promising delivery system for mRNA vaccines. Methodologically, this research represents a novel endeavor in the utilization of chiral self-assembling peptides within the realm of mRNA vaccines. This approach not only introduces fresh prospects for employing such nanomaterials in various mRNA vaccines but also expands the potential for developing small molecules, proteins, and antibodies. Furthermore, it paves the way for new clinical applications of existing pharmaceuticals.
Assuntos
Peptídeos , RNA Mensageiro , Animais , Peptídeos/química , RNA Mensageiro/administração & dosagem , Vacinas de mRNA , Proteínas de Fluorescência Verde/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Camundongos , Feminino , Gatos , Sistemas de Liberação de Medicamentos/métodosRESUMO
Objective To investigate the effect of chiral self-assembled peptides SciobioII and Sciobio IV on the repair of anterior cruciate ligament injury. Methods The structure of the self-assembled peptides SciobioII and Sciobio IV was analyzed by circular dichroism, transmission electron microscopy, and aniline blue staining; the activity and morphology of human ligament fibroblasts (HLF) in 3D cell culture matrix were detected by acridine orange/ethidium bromide (AO/EB) staining and FITC-phalloidin staining. The rabbit model of anterior cruciate ligament injuries was established and the effects of self-assembled peptides on the ligament repair were analyzed by HE staining and immunohistochemistry. Results The self-assembled peptides SciobioII and Sciobio IV formed a stable ß-sheet after self-assembling in PBS for 24 hours, and futher constructed a nanofiber network structure, which was suitable for 3D cell culture. Human ligament fibroblasts maintained a round shape and grew vigorously in the 3D cell culture media constructed by self-assembled peptides. Animal experiments showed that the self-assembled peptide SciobioII promoted the repair rate of anterior cruciate ligament injury in rabbit. Conclusion Chiral self-assembled peptides Sciobio II and Sciobio IV can be used for 3D cell culture and repair of anterior cruciate ligament injury in rabbit.
Assuntos
Lesões do Ligamento Cruzado Anterior , Animais , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Técnicas de Cultura de Células em Três Dimensões , Fibroblastos , Peptídeos , CoelhosRESUMO
Patient-derived organoid (PDO) models have been widely used in precision medicine. The inability to standardize organoid creation in pre-clinical models has become apparent. The common mouse-derived extracellular matrix can no longer meet the requirements for the establishment of PDO models. Therefore, in order to develop effective methods for 3D cultures of organoids, we designed a self-assembling peptide, namely DRF3, which can be self-assembled into ordered fibrous scaffold structures. Here, we used the co-assembly of self-assembling peptide (SAP) and collagen type I, fibronectin, and laminin (SAP-Matrix) to co-simulate the extracellular matrix, which significantly reduced the culture time of PDO, improved the culture efficiency, and increased the self-assembly ability of cells. Compared with the results from the 2D cell line, the PDO showed a more significant expression of cancer-related genes. During organoid self-assembly, the expression of cancer-related genes is increased. These findings provide a theoretical basis for the establishment of precision molecular modeling platforms in the future.