Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(6): e112647, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36740997

RESUMO

Neurogenesis in the developing and adult brain is intimately linked to remodeling of cellular metabolism. However, it is still unclear how distinct metabolic programs and energy sources govern neural stem cell (NSC) behavior and subsequent neuronal differentiation. Here, we found that adult mice lacking the mitochondrial urea metabolism enzyme, Arginase-II (Arg-II), exhibited NSC overactivation, thereby leading to accelerated NSC pool depletion and decreased hippocampal neurogenesis over time. Mechanistically, Arg-II deficiency resulted in elevated L-arginine levels and induction of a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) caused by impaired attachment of hexokinase-I to mitochondria. Notably, selective inhibition of OXPHOS ameliorated NSC overactivation and restored abnormal neurogenesis in Arg-II deficient mice. Therefore, Arg-II-mediated intracellular L-arginine homeostasis directly influences the metabolic fitness of neural stem cells that is essential to maintain neurogenesis with age.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Proliferação de Células , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Glicólise , Homeostase , Arginina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(8): e2318030121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346182

RESUMO

The circadian clock throughout the day organizes the activity of neural stem cells (NSCs) in the dentate gyrus (DG) of adult hippocampus temporally. However, it is still unclear whether and how circadian signals from the niches contribute to daily rhythmic variation of NSC activation. Here, we show that norepinephrinergic (NEergic) projections from the locus coeruleus (LC), a brain arousal system, innervate into adult DG, where daily rhythmic release of norepinephrine (NE) from the LC NEergic neurons controlled circadian variation of NSC activation through ß3-adrenoceptors. Disrupted circadian rhythmicity by acute sleep deprivation leads to transient NSC overactivation and NSC pool exhaustion over time, which is effectively ameliorated by the inhibition of the LC NEergic neuronal activity or ß3-adrenoceptors-mediated signaling. Finally, we demonstrate that NE/ß3-adrenoceptors-mediated signaling regulates NSC activation through molecular clock BMAL1. Therefore, our study unravels that adult NSCs precisely coordinate circadian neural circuit and intrinsic molecular circadian clock to adapt their cellular behavior across the day.


Assuntos
Relógios Circadianos , Células-Tronco Neurais , Humanos , Adulto , Ritmo Circadiano/fisiologia , Hipocampo , Relógios Circadianos/fisiologia , Receptores Adrenérgicos
3.
Proc Natl Acad Sci U S A ; 120(49): e2311509120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011569

RESUMO

Bacterial small RNAs (sRNAs) regulate gene expression by base-pairing with their target mRNAs. In Escherichia coli and many other bacteria, this process is dependent on the RNA chaperone Hfq, a mediator for sRNA-mRNA annealing. YhbS (renamed here as HqbA), a putative Gcn5-related N-acetyltransferase (GNAT), was previously identified as a silencer of sRNA signaling in a genomic library screen. Here, we studied how HqbA regulates sRNA signaling and investigated its physiological roles in modulating Hfq activity. Using fluorescent reporter assays, we found that HqbA overproduction suppressed all tested Hfq-dependent sRNA signaling. Direct interaction between HqbA and Hfq was demonstrated both in vivo and in vitro, and mutants that blocked the interaction interfered with HqbA suppression of Hfq. However, an acetylation-deficient HqbA mutant still disrupted sRNA signaling, and HqbA interacted with Hfq at a site far from the active site. This suggests that HqbA may be bifunctional, with separate roles for regulating via Hfq interaction and for acetylation of undefined substrates. Gel shift assays revealed that HqbA strongly reduced the interaction between the Hfq distal face and low-affinity RNAs but not high-affinity RNAs. Comparative RNA immunoprecipitation of Hfq and sequencing showed enrichment of two tRNA precursors, metZWV and proM, by Hfq in mutants that lost the HqbA-Hfq interaction. Our results suggest that HqbA provides a level of quality control for Hfq by competing with low-affinity RNA binders.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo
4.
Clin Immunol ; 265: 110264, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825072

RESUMO

Rheumatoid arthritis (RA) is a systemic chronic autoimmune disease that primarily affects the joints and surrounding soft tissues, characterized by chronic inflammation and proliferation of the synovium. Various immune cells are involved in the pathophysiology of RA. The complex interplay of factors such as chronic inflammation, genetic susceptibility, dysregulation of serum antibody levels, among others, contribute to the complexity of the disease mechanism, disease activity, and treatment of RA. Recently, the cytokine storm leading to increased disease activity in RA has gained significant attention. Interleukin-33 (IL-33), a member of the IL-1 family, plays a crucial role in inflammation and immune regulation. ST2 (suppression of tumorigenicity 2 receptor), the receptor for IL-33, is widely expressed on the surface of various immune cells. When IL-33 binds to its receptor ST2, it activates downstream signaling pathways to exert immunoregulatory effects. In RA, IL-33 regulates the progression of the disease by modulating immune cells such as circulating monocytes, tissue-resident macrophages, synovial fibroblasts, mast cells, dendritic cells, neutrophils, T cells, B cells, endothelial cells, and others. We have summarized and analyzed these findings to elucidate the pathways through which IL-33 regulates RA. Furthermore, IL-33 has been detected in the synovium, serum, and synovial fluid of RA patients. Due to inconsistent research results, we conducted a meta-analysis on the association between serum IL-33, synovial fluid IL-33, and the risk of developing RA in patients. The pooled SMD was 1.29 (95% CI: 1.15-1.44), indicating that IL-33 promotes the onset and pathophysiological progression of RA. Therefore, IL-33 may serve as a biomarker for predicting the risk of developing RA and treatment outcomes. As existing drugs for RA still cannot address drug resistance in some patients, new therapeutic approaches are needed to alleviate the significant burden on RA patients and healthcare systems. In light of this, we analyzed the potential of targeting the IL-33/ST2-related signaling pathway to modulate immune cells associated with RA and alleviate inflammation. We also reviewed IL-33 and RA susceptibility-related single nucleotide polymorphisms, suggesting potential involvement of IL-33 and macrophage-related drug-resistant genes in RA resistance therapy. Our review elucidates the role of IL-33 in the pathophysiology of RA, offering new insights for the treatment of RA.


Assuntos
Artrite Reumatoide , Interleucina-33 , Animais , Humanos , Artrite Reumatoide/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/imunologia , Transdução de Sinais/imunologia
5.
RNA ; 28(2): 227-238, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815358

RESUMO

The Bacillus subtilis genome is predicted to encode numerous ribonucleases, including four 3' exoribonucleases that have been characterized to some extent. A strain containing gene knockouts of all four known 3' exoribonucleases is viable, suggesting that one or more additional RNases remain to be discovered. A protein extract from the quadruple RNase mutant strain was fractionated and RNase activity was followed, resulting in the identification of an enzyme activity catalyzed by the YloC protein. YloC is an endoribonuclease and is a member of the highly conserved "YicC family" of proteins that is widespread in bacteria. YloC is a metal-dependent enzyme that catalyzes the cleavage of single-stranded RNA, preferentially at U residues, and exists in an oligomeric form, most likely a hexamer. As such, YloC shares some characteristics with the SARS-CoV Nsp15 endoribonuclease. While the in vivo function of YloC in B. subtilis is yet to be determined, YloC was found to act similarly to YicC in an Escherichia coli in vivo assay that assesses decay of the small RNA, RyhB. Thus, YloC may play a role in small RNA regulation.


Assuntos
Bacillus subtilis/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endorribonucleases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , Mutação , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Especificidade por Substrato , Proteínas não Estruturais Virais/metabolismo
6.
Cell Immunol ; 401-402: 104845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38909549

RESUMO

CD147 is a T cell activation-associated molecule which is closely involved in the formation of the immune synapse (IS). However, the precise role of CD147 in T cell activation and IS formation remains unclear. In the present study, we demonstrated that CD147 translocated to the IS upon T cell activation and was primarily distributed in the peripheral super molecular cluster (p-SMAC). The knock down of CD147 expression in T cells, but not in B cells, impaired IS formation. CD147 participated in IS formation between T cells and different types of antigen-presenting cells (APCs), including macrophages and dendritic cells. Ligation of CD147 with its monoclonal antibody (mAb) HAb18 effectively inhibited T cell activation and IL-2 secretion. CD98, a critical molecule interacting with CD147, was distributed in IS in a CD147-dependent way. Phosphorylation levels of T cell receptor (TCR) related molecules, like ZAP-70, ERK, and cJun, were down-regulated by CD147 ligation, which is crucial for the interaction of CD147 and TCR signaling transduction. CD147 is indispensable for the formation of immune synapses and plays an important role in the regulation of its function.


Assuntos
Basigina , Sinapses Imunológicas , Ativação Linfocitária , Linfócitos T , Basigina/metabolismo , Basigina/imunologia , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Ativação Linfocitária/imunologia , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fosforilação , Anticorpos Monoclonais/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Linfócitos B/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Interleucina-2/metabolismo , Interleucina-2/imunologia , Animais , Células Jurkat
7.
Opt Lett ; 49(5): 1117-1120, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426952

RESUMO

We report a tunable spatiotemporally mode-locked large-mode-area Er:ZBLAN fiber laser based on the nonlinear polarization rotation technique. A diffraction grating is introduced to select the operating wavelength. Under the spectral and spatial filtering effects provided by the grating and spatial coupling respectively, stable ps-level spatiotemporally mode-locked pulses around 2.8 µm with a repetition rate of 43.4 MHz are generated. Through a careful adjustment of the grating, a broad wavelength tuning range from 2747 to 2797 nm is realized. To the best of our knowledge, this is the first wavelength-tunable spatiotemporally mode-locked fiber laser in the mid-infrared region.

8.
Cancer Cell Int ; 24(1): 191, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822350

RESUMO

Mitogen-activated protein kinase inhibitors (MAPKi) were the first line drugs for advanced melanoma patients with BRAF mutation. Targeted therapies have significant therapeutic effects; however, drug resistance hinders their long-term efficacy. Therefore, the development of new therapeutic strategies against MAPKi resistance is critical. Our previous results showed that MAPKi promote feedback activation of STAT3 signaling in BRAF-mutated cancer cells. Studies have shown that alantolactone inhibited the activation of STAT3 in a variety of tumor cells. Our results confirmed that alantolactone suppressed cell proliferation and promoted apoptosis by inhibiting STAT3 feedback activation induced by MAPKi and downregulating the expression of downstream Oct4 and Sox2. The inhibitory effect of alantolactone combined with a MAPKi on melanoma cells was significantly stronger than that on normal cells. In vivo and in vitro experiments showed that combination treatment was effective against drug-resistant melanomas. Our research indicates a potential novel combination therapy (alantolactone and MAPKi) for patients with BRAF-mutated melanoma.

9.
Cancer Cell Int ; 24(1): 119, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553712

RESUMO

OBJECTIVE: This study aimed to construct a model based on 23 enrolled molecules to evaluate prognoses of pT2/3N0M0 esophageal squamous cell carcinoma (ESCC) patients with up to 20 years of follow-up. METHODS: The lasso-Cox model was used to identify the candidate molecule. A nomogram was conducted to develop the survival model (molecular score, MS) based on the molecular features. Cox regression and Kaplan-Meier analysis were used in this study. The concordance index (C-index) was measured to compare the predicted ability between different models. The primary endpoint was overall survival (OS). RESULTS: A total of 226 patients and 23 proteins were enrolled in this study. Patients were classified into high-risk (MS-H) and low-risk (MS-L) groups based on the MS score of 227. The survival curves showed that the MS-L cohort had better 5-year and 10-year survival rates than the MS-H group (5-year OS: 51.0% vs. 8.0%; 10-year OS: 45.0% vs. 5.0%, all p < 0.001). Furthermore, multivariable analysis confirmed MS as an independent prognostic factor after eliminating the confounding factors (Hazard ratio 3.220, p < 0.001). The pT classification was confirmed to differentiate ESCC patients' prognosis (Log-rank: p = 0.029). However, the combination of pT and MS could classify survival curves evidently (overall p < 0.001), which showed that the prognostic prediction efficiency was improved significantly by the combination of the pT and MS than by the classical pT classification (C-index: 0.656 vs. 0.539, p < 0.001). CONCLUSIONS: Our study suggested an MS for significant clinical stratification of T2/3N0M0 ESCC patients to screen out subgroups with poor prognoses. Besides, the combination of pT staging and MS could predict survival more accurately for this cohort than the pT staging system alone.

10.
Cell Commun Signal ; 22(1): 41, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229167

RESUMO

BACKGROUND: Tar is the main toxic of cigarettes, and its effect on atherosclerosis progression and the underlying mechanisms remain largely unknown. Vascular smooth muscle cells (VSMCs) play a key role in atherogenesis and plaque vulnerability. The present study sought to investigate the mechanism of atherosclerosis progression through tar-induced VSMC necroptosis, a recently described form of necrosis. METHODS: The effect of tar on atherosclerosis progression and VSMC necroptosis was examined in ApoE-/- mice and cultured VSMCs. The role of necroptosis in tar-induced plaque development was evaluated in RIPK3-deletion mice (ApoE-/-RIPK3-/-). The key proteins of necroptosis in carotid plaques of smokers and non-smokers were also examined. Quantitative proteomics of mice aortas was conducted to further investigate the underlying mechanism. Pharmacological approaches were then applied to modulate the expression of targets to verify the regulatory process of tar-induced necroptosis. RESULTS: Tar administration led to increased atherosclerotic plaque area and reduced collagen and VSMCs in ApoE-/- mice. The expression of RIPK1、RIPK3、and MLKL in VSMCs of plaques were all increased in tar-exposed mice and smokers. RIPK3 deletion protected against VSMC loss and plaque progression stimulated by tar. In mechanistic studies, quantitative proteomics analysis of ApoE-/- mice aortas suggested that tar triggered endoplasmic reticulum (ER) stress. PERK-eIF2α-CHOP axis was activated in tar-treated VSMCs and atherosclerotic plaque. Inhibition of ER stress using 4PBA significantly reduced plaque progression and VSMC necroptosis. Further study revealed that ER stress resulted in calcium (Ca2+) release into mitochondria and cytoplasm. Elevated Ca2+ levels lead to mitochondrial dysfunction and excessive reactive oxygen species (ROS) production, which consequently promote RIPK3-dependent necroptosis. In addition, Ca2+/calmodulin-dependent protein kinase II (CaMKII) activated by cytosolic Ca2+ overload binds to RIPK3, accounting for necroptosis. CONCLUSION: The findings revealed that cigarette tar promoted atherosclerosis progression by inducing RIPK3-dependent VSMC necroptosis and identified novel avenues of ER stress and Ca2+ overload.


Assuntos
Aterosclerose , Placa Aterosclerótica , Alcatrões , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Músculo Liso Vascular , Necroptose , Aterosclerose/metabolismo , Estresse do Retículo Endoplasmático , Apolipoproteínas E/metabolismo , Miócitos de Músculo Liso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA