Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900824

RESUMO

Socio-economic disparities were associated with disproportionate viral incidence between neighborhoods of New York City (NYC) during the first wave of SARS-CoV-2. We investigated how these disparities affected the co-circulation of SARS-CoV-2 variants during the second wave in NYC. We tested for correlation between the prevalence, in late 2020/early 2021, of Alpha, Iota, Iota with E484K mutation (Iota-E484K), and B.1-like genomes and pre-existing immunity (seropositivity) in NYC neighborhoods. In the context of varying seroprevalence we described socio-economic profiles of neighborhoods and performed migration and lineage persistence analyses using a Bayesian phylogeographical framework. Seropositivity was greater in areas with high poverty and a larger proportion of Black and Hispanic or Latino residents. Seropositivity was positively correlated with the proportion of Iota-E484K and Iota genomes, and negatively correlated with the proportion of Alpha and B.1-like genomes. The proportion of persisting Alpha lineages declined over time in locations with high seroprevalence, whereas the proportion of persisting Iota-E484K lineages remained the same in high seroprevalence areas. During the second wave, the geographic variation of standing immunity, due to disproportionate disease burden during the first wave of SARS-CoV-2 in NYC, allowed for the immune evasive Iota-E484K variant, but not the more transmissible Alpha variant, to circulate in locations with high pre-existing immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Estudos Soroepidemiológicos , Fatores Socioeconômicos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Mutação
2.
MMWR Morb Mortal Wkly Rep ; 70(19): 712-716, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33983915

RESUMO

Recent studies have documented the emergence and rapid growth of B.1.526, a novel variant of interest (VOI) of SARS-CoV-2, the virus that causes COVID-19, in the New York City (NYC) area after its identification in NYC in November 2020 (1-3). Two predominant subclades within the B.1.526 lineage have been identified, one containing the E484K mutation in the receptor-binding domain (1,2), which attenuates in vitro neutralization by multiple SARS-CoV-2 antibodies and is present in variants of concern (VOCs) first identified in South Africa (B.1.351) (4) and Brazil (P.1).* The NYC Department of Health and Mental Hygiene (DOHMH) analyzed laboratory and epidemiologic data to characterize cases of B.1.526 infection, including illness severity, transmission to close contacts, rates of possible reinfection, and laboratory-diagnosed breakthrough infections among vaccinated persons. Preliminary data suggest that the B.1.526 variant does not lead to more severe disease and is not associated with increased risk for infection after vaccination (breakthrough infection) or reinfection. Because relatively few specimens were sequenced over the study period, the statistical power might have been insufficient to detect modest differences in rates of uncommon outcomes such as breakthrough infection or reinfection. Collection of timely viral genomic data for a larger proportion of citywide cases and rapid integration with population-based surveillance data would enable improved understanding of the impact of emerging SARS-CoV-2 variants and specific mutations to help guide public health intervention efforts.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Teste de Ácido Nucleico para COVID-19 , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Adulto Jovem
4.
Influenza Other Respir Viruses ; 17(1): e13062, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317297

RESUMO

BACKGROUND: Comparing disease severity between SARS-CoV-2 variants among populations with varied vaccination and infection histories can help characterize emerging variants and support healthcare system preparedness. METHODS: We compared COVID-19 hospitalization risk among New York City residents with positive laboratory-based SARS-CoV-2 tests when ≥98% of sequencing results were Delta (August-November 2021) or Omicron (BA.1 and sublineages, January 2022). A secondary analysis defined variant exposure using patient-level sequencing results during July 2021-January 2022, comprising 1-18% of weekly confirmed cases. RESULTS: Hospitalization risk was lower among patients testing positive when Omicron (16,025/488,053, 3.3%) than when Delta predominated (8268/158,799, 5.2%). In multivariable analysis adjusting for demographic characteristics and prior diagnosis and vaccination status, patients testing positive when Omicron predominated, compared with Delta, had 0.72 (95% CI: 0.63, 0.82) times the hospitalization risk. In a secondary analysis of patients with sequencing results, hospitalization risk was similar among patients infected with Omicron (2042/29,866, 6.8%), compared with Delta (1780/25,272, 7.0%), and higher among the subset who received two mRNA vaccine doses (adjusted relative risk 1.64; 95% CI: 1.44, 1.87). CONCLUSIONS: Hospitalization risk was lower among patients testing positive when Omicron predominated, compared with Delta. This finding persisted after adjusting for prior diagnosis and vaccination status, suggesting intrinsic virologic properties, not population-based immunity, explained the lower severity. Secondary analyses demonstrated collider bias from the sequencing sampling frame changing over time in ways associated with disease severity. Representative data collection is necessary to avoid bias when comparing disease severity between previously dominant and newly emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Cidade de Nova Iorque/epidemiologia , Hospitalização
5.
Nat Commun ; 13(1): 3645, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752633

RESUMO

Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.


Assuntos
COVID-19 , Superinfecção , Genoma Viral/genética , Humanos , Cidade de Nova Iorque/epidemiologia , Recombinação Genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA