Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Wound Repair Regen ; 31(5): 576-585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37314212

RESUMO

Reconstitution of normal skin anatomy after full-thickness skin loss may be accomplished using a combination of a dermal regeneration template (DRT) and a split thickness skin graft (STSG). However, because of the relatively low rate of cell infiltration and vascularisation of currently available DRTs, reconstruction is almost always performed in a two-step procedure over the course of several weeks, resulting in multiple dressing changes, prolonged immobilisation and increased chance of infection. To mitigate the potential complications of this prolonged process, the collagen-based dermal template DermiSphere™ was developed and tested in a single-step procedure wherein DermiSphere and STSG were implanted simultaneously. When evaluated in a porcine, full thickness, excisional wound model, DermiSphere successfully supported simultaneous split thickness skin graft take and induced functional neodermal tissue deposition. When compared to a market leading product Integra Bilayer Wound Matrix, which was used in a multistep procedure (STSG placed 14 days after product implantation according to the product IFU), DermiSphere induced a similar moderate and transient inflammatory response that produced similar neodermal tissue maturity, thickness and vascularity, despite being implanted in a single surgical procedure leading to wound closure 2 weeks earlier. These data suggest that DermiSphere may be implanted in a single-step procedure with an STSG, which would significantly shorten the time course required for the reconstruction of both dermal and epidermal components of skin after full thickness loss.


Assuntos
Transplante de Pele , Pele Artificial , Animais , Suínos , Transplante de Pele/métodos , Cicatrização/fisiologia , Pele , Colágeno , Epiderme
2.
Biomacromolecules ; 23(3): 1205-1213, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35044744

RESUMO

Biodegradable shape memory elastomers have the potential for use in soft tissue engineering, drug delivery, and device fabrication applications. Unfortunately, few materials are able to meet the targeted degradation and mechanical properties needed for long-term implantable devices. In order to overcome these limitations, we have designed and synthesized a series of unsaturated polyurethanes that are elastic, degradable, and nontoxic to cells in vitro. The polymerization included a nucleophilic thiol-yne Michael addition between a urethane-based dipropiolate and a dithiol to yield an α,ß-unsaturated carbonyl moiety along the polymer backbone. The alkene stereochemistry of the materials was tuned between 32 and 82% cis content using a combination of an organic base and solvent polarity, which collectively direct the nucleophilic addition. The bulk properties such as tensile strength, modulus, and glass transition temperature can also be tuned broadly, and the hydrogen bonding imparted by the urethane moiety allows for these materials to elicit cyclic shape memory behavior. We also demonstrated that the in vitro degradation properties are highly dependent on the alkene stereochemistry.


Assuntos
Materiais Biocompatíveis , Poliuretanos , Alcenos , Materiais Biocompatíveis/química , Elastômeros/química , Teste de Materiais , Poliuretanos/química , Compostos de Sulfidrila
3.
J Am Chem Soc ; 140(1): 277-284, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29236489

RESUMO

The ring-opening copolymerization of maleic anhydride and propylene oxide, using a functionalized primary alcohol initiator and magnesium 2,6-di-tert-butyl phenoxide as a catalyst, was investigated in order to produce high end-group fidelity poly(propylene maleate). Subsequent isomerization of the material into 3D printable poly(propylene fumarate) was utilized to produce thin films and scaffolds possessing groups that can be modified with bioactive groups postpolymerization and postprinting. The surface concentration of these modifiable groups was determined to be 30.0 ± 3.3 pmol·cm-2, and copper-mediated azide-alkyne cycloaddition was used to attach a small molecule dye and cell adhesive GRGDS peptides to the surface as a model system. The films were then studied for cytotoxicity and found to have high cell viability before and after surface modification.


Assuntos
Fumaratos/química , Magnésio/química , Maleatos/química , Polipropilenos/química , Impressão Tridimensional , Células 3T3 , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Catálise , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fumaratos/farmacologia , Maleatos/farmacologia , Camundongos , Estrutura Molecular , Polimerização , Polipropilenos/farmacologia , Relação Estrutura-Atividade
4.
Biomacromolecules ; 19(7): 3129-3139, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29906391

RESUMO

Platelet-rich plasma (PRP) is a clinically relevant source of growth factors used commonly by surgeons. The clinical efficacy of PRP use as reported in the literature is widely variable which is likely attributed to poorly defined retention time of PRP at the repair site. To overcome this limitation, branched poly(ester urea) (PEU) nanofibers were used to adsorb and retain PRP at the implant site in an acute rotator-cuff tear model in rats. The adsorption of PRP to the branched-PEU 8% material was characterized using quartz crystal microbalance (QCM) and immuno-protein assay. After adsorption of PRP to the nanofiber sheet, the platelets actively released proteins. The adhesion of platelets to the nanofiber material was confirmed by immunofluorescence using a p-selectin antibody. In vivo testing using a rat rotator-cuff repair model compared five groups; no repair (control), suture repair only, repair with disc implant (Disc), repair with PRP-soaked disc (Disc PRP), and a PRP injection (PRP). Mechanical testing at 84 d for the four surgical repair groups resulted in a higher stiffness (11.8 ± 3.8 N/mm, 13.5 ± 3.8 N/mm, 16.8 ± 5.8 N/mm, 12.2 ± 2.6 N/mm, respectively) for the Disc PRP group. Histological staining using trichrome, hematoxylin, and eosin Y (H&E), and safranin O confirmed more collagen organization in the Disc PRP group at 21 and 84 d. Limited inflammation and recovery toward preoperative mechanical properties indicate PEU nanofiber discs as translationally relevant.


Assuntos
Procedimentos Ortopédicos/métodos , Plasma Rico em Plaquetas/química , Poliésteres/química , Lesões do Manguito Rotador/cirurgia , Alicerces Teciduais/química , Ureia/análogos & derivados , Animais , Células Cultivadas , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Nanofibras/química , Plasma Rico em Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Angew Chem Int Ed Engl ; 57(39): 12759-12764, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30080946

RESUMO

Three functional epoxides were copolymerized with maleic anhydride to yield degradable poly(propylene fumarate) analogues. The polymers were modified post-polymerization and post-printing with either click-type addition reactions or UV deprotection to either attach bioactive species or increase the hydrophilicity. Successful dye attachment, induced wettability, and improved cell spreading show the viability of these analogues in biomaterials applications.


Assuntos
Compostos de Epóxi/química , Fumaratos/química , Anidridos Maleicos/química , Polipropilenos/química , Animais , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Química Click , Fumaratos/síntese química , Fumaratos/farmacologia , Camundongos , Microscopia de Fluorescência , Polimerização , Polipropilenos/síntese química , Polipropilenos/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria
6.
Biomacromolecules ; 18(10): 3168-3177, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28857554

RESUMO

Poly(propylene fumarate) (PPF) has been highlighted as one of the most promising materials for bone regeneration. Despite the promising advantages of using polymer scaffolds for biomedical applications, their inherent lack of bioactivity has limited their clinical application. In this study, PPF was successfully functionalized with Bioglass and a novel catechol-bearing peptide bioconjugate containing bioactive short peptide sequences of basic fibroblast growth factor, bone morphogenetic protein 2, and osteogenic growth peptide. The binding affinity was assessed to be around 110 nmol/cm2 with the Bioglass content at 10 wt %. Fluorescence imaging studies show that the catechol-bearing modular peptide binds preferentially to the Bioglass. A 4 week in vitro cell study using human mesenchymal stem cells showed that cell adhesion, spreading, proliferation, and osteogenic differentiation at both gene and protein levels were all improved by the introduction of peptides, demonstrating the potential approach of dually functionalized polymers for bone regeneration.


Assuntos
Cerâmica/química , Peptídeos/química , Polipropilenos/química , Alicerces Teciduais/química , Proteína Morfogenética Óssea 2/química , Catecóis/química , Adesão Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cerâmica/farmacologia , Fator 2 de Crescimento de Fibroblastos/química , Histonas/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Peptídeos/metabolismo , Ligação Proteica
7.
Chem Commun (Camb) ; 59(25): 3711-3714, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36896804

RESUMO

Organic metal halide hybrids with low-dimensional structures at the molecular level have received great attention recently for their exceptional structural tunability and unique photophysical properties. Here we report for the first time the synthesis and characterization of a one-dimensional (1D) organic metal halide hybrid, which contains metal halide nanoribbons with a width of three octahedral units. It is found that this material with a chemical formula C8H28N5Pb3Cl11 shows a dual emission with a photoluminescence quantum efficiency (PLQE) of around 25%. Photophysical studies and density functional theory (DFT) calculations suggest the coexisting of delocalized free excitons and localized self-trapped excitons in metal halide nanoribbons leading to the dual emission.

8.
Adv Mater ; 35(9): e2209417, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36524448

RESUMO

Zero-dimensional (0D) organic metal halide hybrids (OMHHs) have recently emerged as a new class of light emitting materials with exceptional color tunability. While near-unity photoluminescence quantum efficiencies (PLQEs) are routinely obtained for a large number of 0D OMHHs, it remains challenging to apply them as emitter for electrically driven light emitting diodes (LEDs), largely due to the low conductivity of wide bandgap organic cations. Here, the development of a new OMHH, triphenyl(9-phenyl-9H-carbazol-3-yl) phosphonium antimony bromide (TPPcarzSbBr4 ), as emitter for efficient LEDs, which consists of semiconducting organic cations (TPPcarz+ ) and light emitting antimony bromide anions (Sb2 Br8 2- ), is reported. By replacing one of the phenyl groups in a well-known tetraphenylphosphonium cation (TPP+ ) with an electroactive phenylcarbazole group, a semiconducting TPPcarz+ cation is developed for the preparation of red emitting 0D TPPcarzSbBr4 single crystals with a high PLQE of 93.8%. With solution processed TPPcarzSbBr4 thin films (PLQE of 86.1%) as light emitting layer, red LEDs are fabricated to exhibit an external quantum efficiency (EQE) of 5.12%, a peak luminance of 5957 cd m-2 , and a current efficiency of 14.2 cd A-1 , which are the best values reported to date for electroluminescence devices based on 0D OMHHs.

9.
Adv Healthc Mater ; 8(17): e1900646, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31328402

RESUMO

The emergence of additive manufacturing has afforded the ability to fabricate intricate, high resolution, and patient-specific polymeric implants. However, the availability of biocompatible resins with tunable resorption profiles remains a significant hurdle to clinical translation. In this study, 3D scaffolds are fabricated via stereolithographic cDLP printing of poly(propylene fumarate) (PPF) and assessed for bone regeneration in a rat critical-sized cranial defect model. Scaffolds are printed with two different molecular mass resin formulations (1000 and 1900 Da) with narrow molecular mass distributions and implanted to determine if these polymer characteristics influence scaffold resorption and bone regeneration in vivo. X-ray microcomputed tomography (µ-CT) data reveal that at 4 weeks the lower molecular mass polymer degrades faster than the higher molecular mass PPF and thus more new bone is able to infiltrate the defect. However, at 12 weeks, the regenerated bone volume of the 1900 Da formulation is nearly equivalent to the lower molecular mass 1000 Da formulation. Significantly, lamellar bone bridges the defect at 12 weeks with both PPF formulations and there is no indication of an acute inflammatory response.


Assuntos
Regeneração Óssea , Reabsorção Óssea/patologia , Fumaratos/química , Polipropilenos/química , Impressão Tridimensional , Crânio/patologia , Alicerces Teciduais/química , Animais , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/fisiopatologia , Modelos Animais de Doenças , Fumaratos/síntese química , Imageamento Tridimensional , Inflamação/patologia , Peso Molecular , Polipropilenos/síntese química , Ratos Wistar , Crânio/diagnóstico por imagem , Microtomografia por Raio-X
10.
Biomaterials ; 221: 119399, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421314

RESUMO

Hernia repair outcomes have improved with more robust material options for surgeons and optimized surgical techniques. However, ventral hernia repairs remain challenging with an inherent risk of post-surgical adhesions in the peritoneal space which can occur regardless of interventional material or its surgical placement. Herein, amino acid-based poly(ester urea)s (PEUs) with varied amount of an allyl ether side chains were modified post polymerization modification with the zwitterionic sulfnate group (3-((3-((3-mercaptopropanoyl)oxy)propyl) dimethylammonio)propane-1-sulfonate) to promote anti-adhesive properties. These alloc-PEUs were processed using roll-to-roll fabrication methods to afford films that were amenable to surface functionalization via a zwitterion-thiol. Functional group availability on the surface was confirmed via fluorescence microscopy, x-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance (QCM) measurements. Zwitterionic treated PEUs exhibited reduced fibrinogen adsorption in vitro when compared to unfunctionalized control polymer. A rat intrabdominal cecal abrasion adhesion model was used to assess the extent and tenacity of adhesion formation in the presence of the PEUs. The 10% alloc-PEU zwitterion functionalized material was found to reduce the extent and tenacity of adhesions when compared to adhesion controls and the unfunctionalized PEU controls.


Assuntos
Aminoácidos Neutros/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Poliésteres/química , Poliésteres/uso terapêutico , Aderências Teciduais/prevenção & controle , Ureia/análogos & derivados , Animais , Feminino , Fibrinogênio/metabolismo , Herniorrafia/métodos , Técnicas de Microbalança de Cristal de Quartzo , Ratos , Ratos Sprague-Dawley , Ureia/uso terapêutico
11.
ACS Biomater Sci Eng ; 4(4): 1346-1356, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33418665

RESUMO

New polymers are needed to address the shortcomings of commercially available materials for soft tissue repair. Herein, we investigated a series of l-valine-based poly(ester urea)s (PEUs) that vary in monomer composition and the extent of branching as candidate materials for soft tissue repair. The preimplantation Young's moduli (105 ± 30 to 269 ± 12 MPa) for all the PEUs are comparable to those of polypropylene (165 ± 5 MPa) materials currently employed in hernia-mesh repair. The 2% branched poly(1-VAL-8) maintained the highest Young's modulus following 3 months of in vivo implantation (78 ± 34 MPa) when compared to other PEU analogues (20 ± 6-45 ± 5 MPa). Neither the linear or branched PEUs elicited a significant inflammatory response in vivo as noted by less fibrous capsule formation after 3 months of implantation (80 ± 38 to 103 ± 33 µm) relative to polypropylene controls (126 ± 34 µm). Mechanical degradation in vivo over three months, coupled with limited inflammatory response, suggests that l-valine-based PEUs are translationally relevant materials for soft tissue applications.

12.
PLoS One ; 11(12): e0167664, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907145

RESUMO

An estimated $7.1 billion dollars a year is spent due to irreproducibility in pre-clinical data from errors in data analysis and reporting. Therefore, developing tools to improve measurement comparability is paramount. Recently, an open source tool, DiameterJ, has been deployed for the automated analysis of scanning electron micrographs of fibrous scaffolds designed for tissue engineering applications. DiameterJ performs hundreds to thousands of scaffold fiber diameter measurements from a single micrograph within a few seconds, along with a variety of other scaffold morphological features, which enables a more rigorous and thorough assessment of scaffold properties. Herein, an online, publicly available training module is introduced for educating DiameterJ users on how to effectively analyze scanning electron micrographs of fibers and the large volume of data that a DiameterJ analysis yields. The end goal of this training was to improve user data analysis and reporting to enhance reproducibility of analysis of nanofiber scaffolds. User performance was assessed before and after training to evaluate the effectiveness of the training modules. Users were asked to use DiameterJ to analyze reference micrographs of fibers that had known diameters. The results showed that training improved the accuracy and precision of measurements of fiber diameter in scanning electron micrographs. Training also improved the precision of measurements of pore area, porosity, intersection density, and characteristic fiber length between fiber intersections. These results demonstrate that the DiameterJ training module improves precision and accuracy in fiber morphology measurements, which will lead to enhanced data comparability.


Assuntos
Nanofibras/ultraestrutura , Controle de Qualidade , Estatística como Assunto/métodos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Proliferação de Células , Humanos , Microscopia Eletrônica de Varredura/métodos , Nanofibras/química , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA