Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316564

RESUMO

We recorded directly from the orbital (oPFC) and ventromedial (vmPFC) subregions of the orbitofrontal cortex (OFC) in 22 (9 female, 13 male) epilepsy patients undergoing intracranial electroencephalography (iEEG) monitoring during an experimental task in which the participants judged the accuracy of self-referential autobiographical statements as well as valenced self-judgments (SJs). We found significantly increased high-frequency activity (HFA) in ∼13% of oPFC sites (10/18 subjects) and 16% of vmPFC sites (4/12 subjects) during both of these self-referential thought processes, with the HFA power being modulated by the content of self-referential stimuli. The location of these activated sites corresponded with the location of fMRI-identified limbic network. Furthermore, the onset of HFA in the vmPFC was significantly earlier than that in the oPFC in all patients with simultaneous recordings in both regions. In 11 patients with available depression scores from comprehensive neuropsychological assessments, we documented diminished HFA in the OFC during positive SJ trials among individuals with higher depression scores; responses during negative SJ trials were not related to the patients' depression scores. Our findings provide new temporal and anatomical information about the mode of engagement in two important subregions of the OFC during autobiographical memory and SJ conditions. Our findings from the OFC support the hypothesis that diminished brain activity during positive self-evaluations, rather than heightened activity during negative self-evaluations, plays a key role in the pathophysiology of depression.


Assuntos
Epilepsia , Memória Episódica , Humanos , Masculino , Feminino , Julgamento , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
2.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979261

RESUMO

The brain's functional architecture is intricately shaped by causal connections between its cortical and subcortical structures. Here, we studied 27 participants with 4864 electrodes implanted across the anterior, mediodorsal, and pulvinar thalamic regions, and the cortex. Using data from electrical stimulation procedures and a data-driven approach informed by neurophysiological standards, we dissociated three unique spectral patterns generated by the perturbation of a given brain area. Among these, a novel waveform emerged, marked by delayed-onset slow oscillations in both ipsilateral and contralateral cortices following thalamic stimulations, suggesting a mechanism by which a thalamic site can influence bilateral cortical activity. Moreover, cortical stimulations evoked earlier signals in the thalamus than in other connected cortical areas suggesting that the thalamus receives a copy of signals before they are exchanged across the cortex. Our causal connectivity data can be used to inform biologically-inspired computational models of the functional architecture of the brain.

3.
Res Sq ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853954

RESUMO

The brain's functional architecture is intricately shaped by causal connections between its cortical and subcortical structures. Here, we studied 27 participants with 4864 electrodes implanted across the anterior, mediodorsal, and pulvinar thalamic regions, and the cortex. Using data from electrical stimulation procedures and a data-driven approach informed by neurophysiological standards, we dissociated three unique spectral patterns generated by the perturbation of a given brain area. Among these, a novel waveform emerged, marked by delayed-onset slow oscillations in both ipsilateral and contralateral cortices following thalamic stimulations, suggesting a mechanism by which a thalamic site can influence bilateral cortical activity. Moreover, cortical stimulations evoked earlier signals in the thalamus than in other connected cortical areas suggesting that the thalamus receives a copy of signals before they are exchanged across the cortex. Our causal connectivity data can be used to inform biologically-inspired computational models of the functional architecture of the brain.

4.
Brain Stimul ; 16(6): 1653-1665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37949296

RESUMO

Functions of the human insula have been explored extensively with neuroimaging methods and intracranial electrical stimulation studies that have highlighted a functional segregation across its subregions. A recently developed cytoarchitectonic map of the human insula has also segregated this brain region into various areas. Our knowledge of the functional organization of this brain region at the level of these fine-parceled microstructural areas remains only partially understood. We address this gap of knowledge by applying a multimodal approach linking direct electrical stimulation and task-evoked intracranial EEG recordings with microstructural subdivisions of the human insular cortex. In 17 neurosurgical patients with 142 implanted electrodes, stimulation of 40 % of the sites induced a reportable change in the conscious experience of the subjects in visceral/autonomic, anxiety, taste/olfactory, pain/temperature as well as somatosensory domains. These subjective responses showed a topographical allocation to microstructural areas defined by probabilistic cytoarchitectonic parcellation maps of the human insula. We found the pain and thermal responses to be located in areas lg2/ld2, while non-painful/non-thermal somatosensory responses corresponded to area ld3 and visceroceptive responses to area Id6. Lastly, the stimulation of area Id7 in the dorsal anterior insula, failed to induce reportable changes to subjective experience even though intracranial EEG recordings from this region captured significant time-locked high-frequency activity (HFA). Our results provide a multimodal map of functional subdivisions within the human insular cortex at the individual brain basis and characterize their anatomical association with fine-grained cytoarchitectonic parcellations of this brain structure.


Assuntos
Córtex Cerebral , Córtex Insular , Humanos , Córtex Cerebral/fisiologia , Mapeamento Encefálico/métodos , Estimulação Elétrica , Dor
5.
Neuron ; 111(16): 2502-2512.e4, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37295420

RESUMO

To probe the causal importance of the human posteromedial cortex (PMC) in processing the sense of self, we studied a rare cohort of nine patients with electrodes implanted bilaterally in the precuneus, posterior cingulate, and retrosplenial regions with a combination of neuroimaging, intracranial recordings, and direct cortical stimulations. In all participants, the stimulation of specific sites within the anterior precuneus (aPCu) caused dissociative changes in physical and spatial domains. Using single-pulse electrical stimulations and neuroimaging, we present effective and resting-state connectivity of aPCu hot zone with the rest of the brain and show that they are located outside the boundaries of the default mode network (DMN) but connected reciprocally with it. We propose that the function of this subregion of the PMC is integral to a range of cognitive processes that require the self's physical point of reference, given its location within a spatial environment.


Assuntos
Encéfalo , Lobo Parietal , Humanos , Lobo Parietal/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA