Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 16(10): 6833-45, 2008 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-18545386

RESUMO

We investigate the spectral properties of violet 405 nm (Al,In)GaN laser diodes (LDs). Depending on the substrate the LDs are grown on, the lasing spectra show significant differences. LDs grown on low dislocation GaN substrate have a broad spectrum with several longitudinal modes, while LDs grown on SiC substrate are lasing on a single longitudinal mode.With increasing current, the laser emission of LDs grown on SiC substrate jumps from one longitudinal mode to another (mode hopping), whereas GaN substrate LDs show a smooth but asymmetric mode comb. The different envelopes of these spectra can be understood by assuming a variation of the gain for each individual longitudinal mode. With a high spectral resolution setup, we measure the gain of each longitudinal mode, employing the Hakki-Paoli method. Measurements show a slightly fluctuating gain for the modes of GaN substrate LDs, but much larger fluctuations for LDs on SiC substrate. We carry out simulations of the longitudinal mode spectrum of (Al,In)GaN laser diodes using a rate equation model with nonlinear gain (self saturation, symmetric and asymmetric cross saturation) and including gain fluctuations. With a set of parameters which is largely identical for LDs on either substrate, the simulated spectra truly resemble those typical for LDs on GaN or SiC substrate.

2.
Ultramicroscopy ; 111(8): 1316-27, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21864772

RESUMO

We suggest a method for chemical mapping that is based on scanning transmission electron microscopy (STEM) imaging with a high-angle annular dark field (HAADF) detector. The analysis method uses a comparison of intensity normalized with respect to the incident electron beam with intensity calculated employing the frozen lattice approximation. This procedure is validated with an In(0.07)Ga(0.93)N layer with homogeneous In concentration, where the STEM results were compared with energy filtered imaging, strain state analysis and energy dispersive X-ray analysis. Good agreement was obtained, if the frozen lattice simulations took into account static atomic displacements, caused by the different covalent radii of In and Ga atoms. Using a sample with higher In concentration and series of 32 images taken within 42 min scan time, we did not find any indication for formation of In rich regions due to electron beam irradiation, which is reported in literature to occur for the parallel illumination mode. Image simulation of an In(0.15)Ga(0.85)N layer that was elastically relaxed with empirical Stillinger-Weber potentials did not reveal significant impact of lattice plane bending on STEM images as well as on the evaluated In concentration profiles for specimen thicknesses of 5, 15 and 50 nm. Image simulation of an abrupt interface between GaN and In(0.15)Ga(0.85)N for specimen thicknesses up to 200 nm showed that artificial blurring of interfaces is significantly smaller than expected from a simple geometrical model that is based on the beam convergence only. As an application of the method, we give evidence for the existence of In rich regions in an InGaN layer which shows signatures of quantum dot emission in microphotoluminescence spectroscopy experiments.

3.
Ultramicroscopy ; 109(9): 1171-82, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19497670

RESUMO

In scanning transmission electron microscopy using a high-angle annular dark field detector, image intensity strongly depends on specimen thickness and composition. In this paper we show that measurement of image intensities relative to the intensity of the incoming electron beam allows direct comparison with simulated image intensities, and thus quantitative measurement of specimen thickness and composition. Simulations were carried out with the frozen lattice and absorptive potential multislice methods. The radial inhomogeneity of the detector was measured and taken into account. Using a focused ion beam (FIB) prepared specimen we first demonstrate that specimen thicknesses obtained in this way are in very good agreement with a direct measurement of the thickness of the lamella by scanning electron microscopy in the FIB. In the second step we apply this method to evaluate the composition of Al(x)Ga(1-x)N/GaN layers. We measured ratios of image intensities obtained in regions with unknown and with known Al-concentration x, respectively. We show that estimation of the specimen thickness combined with evaluation of intensity ratios allows quantitative measurement of the composition x. In high-resolution images we find that the image intensity is well described by simulation if the simulated image is convoluted with a Gaussian with a half-width at half-maximum of 0.07 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA