Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 202(6): 1381-1396, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32179939

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are widely used to improve plant nutrient uptake and assimilation and soil physicochemical properties. We investigated the effects of bacterial (Bacillus megaterium strain DU07) fertilizer applications in a eucalyptus (clone DH32-29) plantation in Guangxi, China in February 2011. We used two types of organic matter, i.e., fermented tapioca residue ("FTR") and filtered sludge from a sugar factory ("FS"). The following treatments were evaluated: (1) no PGPR and no organic matter applied (control), (2) 3 × 109 CFU/g (colony forming unit per gram) PGPR plus FS (bacterial fertilizer 1, hereafter referred to as BF1), (3) 4 × 109 CFU/g plus FS (BF2), (4) 9 × 109 CFU/g plus FS (BF3), (5) 9 × 109 CFU/g broth plus FTR (BF4). Soil and plant samples were collected 3 months (M3) and 6 months (M6) after the seedlings were planted. In general, bacterial fertilizer amendments significantly increased plant foliar total nitrogen (TN) and soil catalase activity in the short term (month 3, M3); whereas, it significantly increased foliar TN, chlorophyll concentration (Chl-ab), proline; plant height, diameter, and volume of timber; and soil urease activity, STN, and available N (Avail N) concentrations in the long term (month 6, M6). Redundancy analysis showed that soil available phosphorus was significantly positively correlated with plant growth in M3, and soil Avail N was negatively correlated with plant growth in M6. In M3, soil catalase was more closely correlated with plant parameters than other enzyme activities and soil nutrients, and in M6, soil urease, polyphenol oxidase, and peroxidase were more closely correlated with plant parameters than other environmental factors and soil enzyme activities. PCA results showed that soil enzyme activities were significantly improved under all treatments relative to the control. Hence, photosynthesis, plant growth, and soil N retention were positively affected by bacterial fertilizer in M6, and bacterial fertilizer applications had positive and significant influence on soil enzyme activities during the trial period. Thus, bacterial fertilizer is attractive for use as an environmentally friendly fertilizer in Eucalyptus plantations following proper field evaluation.


Assuntos
Bacillus megaterium/metabolismo , Eucalyptus/crescimento & desenvolvimento , Fertilizantes/microbiologia , Plântula/crescimento & desenvolvimento , Solo/química , Catalase/metabolismo , China , Clorofila/análise , Fertilizantes/análise , Manihot/microbiologia , Nitrogênio/análise , Nutrientes , Fósforo/análise , Desenvolvimento Vegetal , Esgotos/microbiologia , Microbiologia do Solo , Urease/metabolismo
2.
Microorganisms ; 8(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244714

RESUMO

In the current context, there is a growing interest in reducing the use of chemical fertilizers and pesticides to promote ecological agriculture. The use of biochar and plant growth-promoting rhizobacteria (PGPR) is an environmentally friendly alternative that can improve soil conditions and increase ecosystem productivity. However, the effects of biochar and PGPR amendments on forest plantations are not well known. The aim of this study is to investigate the effects of biochar and PGPR applications on soil nutrients and bacterial community. To achieve this goal, we applied amendments of (i) biochar at 20 t hm-2, (ii) PGPR at 5 × 1010 CFU mL-1, and (iii) biochar at 20 t hm-2 + PGPR at 5 × 1010 CFU mL-1 in a eucalyptus seedling plantation in Guangxi, China. Three months after applying the amendments, we collected six soil samples from each treatment and from control plots. From each soil sample, we analyzed several physicochemical properties (pH, electrical conductivity, total N, inorganic N, NO3--N, NH4+-N, total P, total K, and soil water content), and we determined the bacterial community composition by sequencing the ribosomal 16S rRNA. Results indicated that co-application of biochar and PGPR amendments significantly decreased concentrations of soil total P and NH4+-N, whereas they increased NO3-N, total K, and soil water content. Biochar and PGPR treatments increased the richness and diversity of soil bacteria and the relative abundance of specific bacterial taxa such as Actinobacteria, Gemmatimonadetes, and Cyanobacteria. In general, the microbial composition was similar in the two treatments with PGPR. We also found that soil physicochemical properties had no significant influence on the soil composition of bacterial phyla, but soil NH4+-N was significantly related to the soil community composition of dominant bacterial genus. Thus, our findings suggest that biochar and PGPR amendments could be useful to maintain soil sustainability in eucalyptus plantations.

3.
PLoS One ; 7(11): e49236, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166618

RESUMO

We isolated a novel strain D5 from nodules of Acacia confusa. Under strict sterile conditions the strain could successfully nodulate Acacia confusa, A. crassicarpa and A. mangium, with nitrogenase activity ranging from 18.90 to 19.86 nmol·g(-1)·min(-1). In the phylogenetic tree based on a complete 16S rRNA gene sequence, the sequence of strain D5 shared 99% homology with that of four species of genus Pseudomonas. The 685 bp nodA fragment amplified from strain D5 shared 95% homology with the nodA sequence of 9 species of genus Bradyrhizobium, with a genetic distance of 0.01682. The 740 bp nifH gene fragment was amplified from strain D5. This strain D5 nifH gene and Bradyrhizobium spp. formed a branch, showing 98% homology and a genetic distance of 0. The homology between this branch and the Bradyrhizobium spp. DG in another branch was 99%, with a genetic distance of 0.007906. These results indicate that this strain D5 is a new type of nitrogen-fixing bacterium.


Assuntos
Acacia/microbiologia , Bradyrhizobium/genética , Filogenia , Nodulação/genética , Sequência de Bases , Bradyrhizobium/isolamento & purificação , China , Análise por Conglomerados , Primers do DNA/genética , Eletroforese em Gel de Ágar , Evolução Molecular , Modelos Genéticos , Dados de Sequência Molecular , Nitrogenase/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência , Especificidade da Espécie
4.
PLoS One ; 6(8): e23649, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21901126

RESUMO

Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.


Assuntos
Fungos/classificação , Fungos/genética , Hemípteros/microbiologia , Animais , Endófitos , Fungos/patogenicidade , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA