Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Environ Sci Technol ; 58(8): 3838-3848, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38351523

RESUMO

Substantial natural chlorination processes are a growing concern in diverse terrestrial ecosystems, occurring through abiotic redox reactions or biological enzymatic reactions. Among these, exoenzymatically mediated chlorination is suggested to be an important pathway for producing organochlorines and converting chloride ions (Cl-) to reactive chlorine species (RCS) in the presence of reactive oxygen species like hydrogen peroxide (H2O2). However, the role of natural enzymatic chlorination in antibacterial activity occurring in soil microenvironments remains unexplored. Here, we conceptualized that heme-containing chloroperoxidase (CPO)-catalyzed chlorination functions as a naturally occurring disinfection process in soils. Combining antimicrobial experiments and microfluidic chip-based fluorescence imaging, we showed that the enzymatic chlorination process exhibited significantly enhanced antibacterial activity against Escherichia coli and Bacillus subtilis compared to H2O2. This enhancement was primarily attributed to in situ-formed RCS. Based on semiquantitative imaging of RCS distribution using a fluorescence probe, the effective distance of this antibacterial effect was estimated to be approximately 2 mm. Ultrahigh-resolution mass spectrometry analysis showed over 97% similarity between chlorine-containing formulas from CPO-catalyzed chlorination and abiotic chlorination (by sodium hypochlorite) of model dissolved organic matter, indicating a natural source of disinfection byproduct analogues. Our findings unveil a novel natural disinfection process in soils mediated by indigenous enzymes, which effectively links chlorine-carbon interactions and reactive species dynamics.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Cloro/química , Cloro/metabolismo , Halogenação , Peróxido de Hidrogênio , Solo , Ecossistema , Antibacterianos , Catálise
2.
Environ Sci Technol ; 58(19): 8490-8500, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696308

RESUMO

Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air-surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models.


Assuntos
Carbono , Poluentes do Solo , Solo , Solo/química , Poluentes Orgânicos Persistentes , Monitoramento Ambiental , Regiões Árticas , Ecossistema
3.
J Environ Manage ; 356: 120432, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479282

RESUMO

Biodegradation of soil organic matter (SOM), which involves greenhouse gas (GHG) emissions, plays an essential role in the global carbon cycle. Over the past few decades, this has become an important research focus, particularly in natural ecosystems. SOM biodegradation significantly affects contaminants in the environment, such as mercury (Hg) methylation, producing highly toxic methylmercury (MeHg). However, the potential link between GHG production from SOM turnover in contaminated soils and biogeochemical processes involving contaminants remains unclear. In this study, we investigated the dynamics of GHG, MeHg production, and the relationship between biogeochemical processes in soils from two typical Hg mining sites. The two contaminated soils have different pathways, explaining the significant variations in GHG and MeHg production. The divergence of the microbial communities in these two biogeochemical processes is essential. In addition to the microbial role, abiotic factors such as Hg species can significantly affect MeHg production. On the other hand, we found an inverse relationship between CH4 and MeHg, suggesting that carbon emission reduction policies and management could inadvertently increase the MeHg levels. This highlights the need for an eclectic approach to organic carbon sequestration and contaminant containment. These findings suggest that it is difficult to establish a general pattern to describe and explain the SOM degradation and MeHg production in contaminated soils within the specific scenarios. However, this study provides a case study and helpful insights for further understanding the links between environmental risks and carbon turnover in Hg mining areas.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Solo , Ecossistema , Poluentes do Solo/análise , Mercúrio/análise , Carbono , Biodegradação Ambiental , Monitoramento Ambiental
4.
Environ Sci Technol ; 57(9): 4027-4038, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36811997

RESUMO

Glacier-retreated areas are ideal areas to study soil biogeochemical processes during vegetation succession, because of the limited effect of other environmental and climatic factors. In this study, the changes of soil dissolved organic matter (DOM) and its relationship with microbial communities along the Hailuogou Glacier forefield chronosequence were investigated. Both microbial diversity and DOM molecular chemodiversity recovered rapidly at the initial stage, indicating the pioneering role of microorganisms in soil formation and development. The chemical stability of soil organic matter enhanced with vegetation succession due to the retaining of compounds with high oxidation state and aromaticity. The molecular composition of DOM affected microbial communities, while microorganisms tended to utilize labile components to form refractory components. This complex relationship network between microorganisms and DOM components played an important role in the development of soil organic matter as well as the formation of stable soil carbon pool in glacier-retreated areas.


Assuntos
Microbiota , Solo , Solo/química , Matéria Orgânica Dissolvida , Camada de Gelo , Microbiologia do Solo
5.
Environ Sci Technol ; 57(31): 11357-11372, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37493521

RESUMO

Biochar, a carbon (C)-rich material obtained from the thermochemical conversion of biomass under oxygen-limited environments, has been proposed as one of the most promising materials for C sequestration and climate mitigation in soil. The C sequestration contribution of biochar hinges not only on its fused aromatic structure but also on its abiotic and biotic reactions with soil components across its entire life cycle in the environment. For instance, minerals and microorganisms can deeply participate in the mineralization or complexation of the labile (soluble and easily decomposable) and even recalcitrant fractions of biochar, thereby profoundly affecting C cycling and sequestration in soil. Here we identify five key issues closely related to the application of biochar for C sequestration in soil and review its outstanding advances. Specifically, the terms use of biochar, pyrochar, and hydrochar, the stability of biochar in soil, the effect of biochar on the flux and speciation changes of C in soil, the emission of nitrogen-containing greenhouse gases induced by biochar production and soil application, and the application barriers of biochar in soil are expounded. By elaborating on these critical issues, we discuss the challenges and knowledge gaps that hinder our understanding and application of biochar for C sequestration in soil and provide outlooks for future research directions. We suggest that combining the mechanistic understanding of biochar-to-soil interactions and long-term field studies, while considering the influence of multiple factors and processes, is essential to bridge these knowledge gaps. Further, the standards for biochar production and soil application should be widely implemented, and the threshold values of biochar application in soil should be urgently developed. Also needed are comprehensive and prospective life cycle assessments that are not restricted to soil C sequestration and account for the contributions of contamination remediation, soil quality improvement, and vegetation C sequestration to accurately reflect the total benefits of biochar on C sequestration in soil.


Assuntos
Sequestro de Carbono , Solo , Solo/química , Carvão Vegetal/química , Carbono
6.
Environ Sci Technol ; 57(30): 11173-11184, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37462533

RESUMO

Brown carbon (BrC) is one of the most mysterious aerosol components responsible for global warming and air pollution. Iron (Fe)-induced catalytic oxidation of ubiquitous phenolic compounds has been considered as a potential pathway for BrC formation in the dark. However, the reaction mechanism and product composition are still poorly understood. Herein, 13 phenolic precursors were employed to react with Fe under environmentally relevant conditions. Using Fourier transform ion cyclotron resonance mass spectrometry, a total of 764 unique molecular formulas were identified, and over 85% of them can be found in atmospheric aerosols. In particular, products derived from precursors with catechol-, guaiacol-, and syringol-like-based structures can be distinguished by their optical and molecular characteristics, indicating the structure-dependent formation of BrC from phenolic precursors. Multiple pieces of evidence indicate that under acidic conditions, the contribution of either autoxidation or oxygen-induced free radical oxidation to BrC formation is extremely limited. Ligand-to-Fe charge transfer and subsequent phenoxy radical coupling reactions were the main mechanism for the formation of polymerization products with high molecular diversity, and the efficiency of BrC generation was linearly correlated with the ionization potential of phenolic precursors. The present study uncovered how chemically diverse BrC products were formed by the Fe-phenolic compound reactions at the molecular level and also provide a new paradigm for the study of the atmospheric aerosol formation mechanism.


Assuntos
Poluentes Atmosféricos , Compostos de Ferro , Carbono , Aerossóis/análise , Compostos de Ferro/análise , Ferro , Guaiacol/análise , Poluentes Atmosféricos/análise
7.
Environ Sci Technol ; 57(43): 16244-16254, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37851943

RESUMO

Per- and polyfluoroalkyl substances (PFAS) receive significant research attention due to their potential adverse effects on human health. Evidence shows that the kidney is one of the target organs of PFAS. In occupational exposure scenarios, high PFAS concentrations may adversely affect kidney metabolism, but whether this effect is reflected in the small metabolic molecules contained in urine remains unknown. In this study, 72 matched serum and urine samples from occupational workers of a fluorochemical manufactory as well as 153 urine samples from local residents were collected, and 23 PFAS levels were quantified. The concentrations of Σ23PFAS in the serum and urine samples of workers were 5.43 ± 1.02 µg/mL and 201 ± 46.9 ng/mL, respectively, while the Σ23PFAS concentration in the urine of the residents was 6.18 ± 0.76 ng/mL. For workers, high levels of urinary PFAS were strongly correlated with levels in serum (r = 0.57-0.93), indicating that urinary PFAS can be a good indicator for serum PFAS levels. Further, a urine nontargeted metabolomics study was conducted. The results of association models, including Bayesian kernel machine regression, demonstrated positive correlations between urinary PFAS levels and key small kidney molecules. A total of eight potential biomarkers associated with PFAS exposure were identified, and all of them showed significant positive correlations with markers of kidney function. These findings provide the first evidence that urine can serve as a matrix to indicate the adverse health effects of high levels of exposure to PFAS on the kidneys.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Exposição Ocupacional , Humanos , Teorema de Bayes , Fluorocarbonos/análise , Metabolômica , Rim/química , Ácidos Alcanossulfônicos/análise , Poluentes Ambientais/análise
8.
J Environ Sci (China) ; 127: 791-798, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522106

RESUMO

PFAS (per- and polyfluoroalkyl substances) are omnipresent in the environment and their transportation and transformation have attracted increased attention. Microplastics are another potential risk substances that can serve as a carrier for ubiquitous pollutants, thus affecting the presence of PFAS in the environment. In this study, the adsorption of perfluorooctane sulfonamide (FOSA) and perfluorooctanoic acid (PFOA) on four microplastics (PE, PVC, PS, and PTFE) and their effect on the photodegradation of FOSA were studied. The adsorption capacity of FOSA by PS was the highest, in similar, PS displayed the highest adsorption capacity in the presence of PFOA. Different effects of pH and salinity on the adsorption of FOSA and PFOA were observed among different microplastics indicating inconsistent interaction mechanisms. Furthermore, FOSA could be photodegraded, with PFOA as the main product, while the presence of microplastics had a negligible effect on the degradation of this contaminant. The results indicated that microplastics could act as PFAS concentrators. Moreover, their photochemical inertias make the pollutants enriched on microplastics more resistant to degradation.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Microplásticos , Plásticos , Fotólise , Poluentes Químicos da Água/análise , Fluorocarbonos/análise
9.
Environ Sci Technol ; 56(18): 12793-12810, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36037253

RESUMO

Soil organic matter (SOM) comprises a continuum of organic materials from granular organic debris to small organic molecules and contains more organic carbon than global vegetation and the atmosphere combined. It has remarkable effects on soil ecological functions and the global carbon cycle as well as the fate of pollutants in the terrestrial ecosystem. Therefore, characterization of SOM is an important topic in soil science, ecology, and environmental science. Chemical complexity and spatial heterogeneity are by far the two biggest challenges to our understanding of SOM. Recent developments in analytical techniques and methods provide the opportunity to reveal SOM composition at the molecular level and to observe its distribution in soils at micro- and nanoscales, which have greatly improved our understanding of SOM. This paper reviews the outstanding advances in SOM characterization regarding these two issues from target and nontarget analyses comprising molecular marker analysis, ultrahigh-resolution mass spectrometry analysis, and in situ microscopic imaging techniques such as synchrotron-based spectromicroscopy, nanoscale secondary ion mass spectrometry, and emerging electron and optical microscopic imaging techniques. However, current techniques and methods remain far from unlocking the unknown properties of SOM. We systematically point out the limitations of the current technologies and outline the future prospects for comprehensive characterization of SOM at the molecular level and micro- and nanoscales, paying particular attention to issues of environmental concern.


Assuntos
Poluentes Ambientais , Solo , Carbono , Ciclo do Carbono , Ecossistema , Solo/química
10.
Environ Sci Technol ; 56(22): 16419-16427, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223591

RESUMO

Microbially mediated iron redox processes are of great significance in the biogeochemical cycles of elements, which are often coupled with soil organic matter (SOM) in the environment. Although the influences of SOM fractions on individual reduction or oxidation processes have been studied extensively, a comprehensive understanding is still lacking. Here, using ferrihydrite, Shewanella oneidensis MR-1, and operationally defined SOM components including fulvic acid (FA), humic acid (HA), and humin (HM) extracted from black soil and peat, we explored the SOM-mediated microbial iron reduction and hydroxyl radical (•OH) production processes. The results showed that the addition of SOM inhibited the transformation of ferrihydrite to highly crystalline iron oxides. Although FA and HA increased Fe(II) production over four times on average due to complexation and their high electron exchange capacities, HA inhibited 30-43% of the •OH yield, while FA had no significant influence on it. Superoxide (O2•-) was the predominant intermediate in •OH production in the FA-containing system, while one- and two-electron transfer processes were concurrent in HA- and HM-containing systems. These findings provide deep insights into the multiple mechanisms of SOM in regulating microbially mediated iron redox processes and •OH production.


Assuntos
Radical Hidroxila , Ferro , Ferro/química , Compostos Férricos , Substâncias Húmicas/análise , Oxirredução , Solo/química
11.
J Environ Sci (China) ; 112: 71-81, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955224

RESUMO

Soil is a major sink for per- and perfluoroalkyl substances (PFAS), wherein PFAS may be transferred through the food chain to predators at upper trophic levels, which poses a threat to human health. Herein, the concentrations and distributions of legacy and novel PFAS in topsoil samples from different functional areas in Tianjin were comprehensively investigated. Seventeen PFAS congeners were identified, with concentrations ranging from 0.21 ng/g to 5.35 ng/g, with a mean concentration of 1.25 ng/g. The main PFAS in the topsoil was perfluorooctanoic acid (PFOA). 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA; C8) were the major sources (43.4%), followed by food packaging as well as coating materials (25.5%). In addition, Spearman correlation analysis and the structural equation model showed that population density significantly impacted the PFAS distribution in the topsoil of Tianjin.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/análise , China , Fluorocarbonos/análise , Humanos , Solo
12.
Angew Chem Int Ed Engl ; 61(47): e202213595, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36177840

RESUMO

Few-layer black phosphorus (FLBP) is easily degraded under ambient conditions which is problem that hinders the application of FLBP, but its degradation mechanism is not yet well understood. In this work, we surprisingly found that persistent generation of reactive oxygen species (ROS) was involved in FLBP degradation even in the dark. The ROS generation patterns and mechanism were revealed by chemiluminescence (CL) and density functional theory (DFT). Meanwhile, rhodamine B (RhB) and methyl orange (MO) can also be removed by FLBP under dark conditions, which further shows the ROS generation during FLBP self-degradation. This work provides new insights into the FLBP self-degradation mechanism and opens opportunities to practically implement FLBP for green catalytic application.

13.
Environ Sci Technol ; 55(3): 1769-1778, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33494598

RESUMO

The selective sorption of dissolved organic matter (DOM) on minerals is a widespread geochemical process in the natural environment. Recent studies have explored the influence of this process on the molecular fractionation of DOM at water-mineral interfaces. However, it remains unclear how molecular fractionation affects the photochemistry of DOM. Here, we demonstrate that the adsorptive fractionation of DOM on ferrihydrite greatly reduces its photoproduction of reactive oxygen species (ROS) including 1O2, O2•-, and •OH normalized to organic carbon (ROSOC). The ROSOC for 1O2, O2•-, and •OH were positively correlated with the abundances of polyphenols and oxygenated polycyclic aromatics, which were also observed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis to be preferentially sequestered by ferrihydrite. The molecules that preferentially remained in the solution after adsorption displayed low levels of ROSOC. The molecular fractionation of DOM induced by adsorption on ferrihydrite therefore influenced the molecular components and also significantly reduced the photoreactive fractions of DOM in waters. These results are very important in promoting our understanding of the effects of molecular fractionation on the biogeochemical features, behaviors, and implications of DOM in the environment.


Assuntos
Fracionamento Químico , Compostos Férricos , Adsorção , Minerais
14.
Environ Sci Technol ; 54(7): 4171-4179, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32119770

RESUMO

Due to its complex composition and structure, many of the properties of natural organic matter (NOM) are poorly understood. In this study, the oxidization-induced chemiluminescence (OCL) of NOM was investigated, and a flow-injection OCL method was developed using alkaline persulfate-H2O2 as the oxidizing agent. The method is suitable for the direct analysis of NOM in both homogeneous and heterogeneous samples without isolation or concentration. A strong linear relationship (p < 0.001) was found between the normalized organic carbon OCL (OCLOC) and the percentage of aromatic carbon in standard NOM and soil samples, suggesting that OCLOC can be used as an empirical indicator to assess the aromaticity degree of NOM in both homogeneous and heterogeneous samples. By using this method, the percentages of aromatic carbon in a forest soil profile with low organic carbon content were estimated, and a decrease in the degree of aromaticity in deeper soil was observed. Considering the high sensitivity (lower than 0.1 mg C L-1) and throughput (13 s per detection) and low sample consumption (less than 1 mg) of the method, the proposed OCLOC indicator shows great promise for the high-throughput evaluation of the aromaticity degree of NOM for a wide variety of environmental and geochemical samples.


Assuntos
Peróxido de Hidrogênio , Luminescência , Adsorção , Carbono , Solo
15.
Environ Sci Technol ; 54(2): 902-910, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31886656

RESUMO

The reduction of ferric iron (Fe(III)) to ferrous iron (Fe(II)) by dissimilatory iron-reducing bacteria is widespread in anaerobic environments. The oxidation of Fe(II) in aerobic environments has been found to produce hydroxyl radicals (•OH); however, the role of iron-reducing bacteria in the process has not been well understood. Here, Shewanella oneidensis MR-1-mediated redox transformation of four typical iron (oxyhydr)oxides and the production of reactive oxygen species were investigated. The results showed that the production of •OH was mainly determined by the insoluble Fe(II) formed during microbially mediated reduction and also mediated by the mineralogical phase. Moreover, this study for the first time observed the exogenetic iron-independent production of •OH by S. oneidensis MR-1, and the integrated pathway of •OH generation during the iron redox process was revealed. Superoxide (O2•-) was indicated as a key intermediate species that was produced by both abiotic and biotic pathways, and •OH was generated by both the exogenetic iron-dependent Fenton-like reaction and exogenetic iron-independent pathways. S. oneidensis MR-1 played a pivotal role in both the reduction of Fe(III) and the production of O2•-. These findings contribute substantially to our understanding of the generation mechanism of reactive oxygen species at oxidation-reduction boundaries in the environment.


Assuntos
Ferro , Shewanella , Compostos Férricos , Radical Hidroxila , Oxirredução , Óxidos
16.
Environ Sci Technol ; 54(13): 8061-8071, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32511902

RESUMO

Growing evidence has suggested that microbial biofilms are potential environmental "hotspots" for the production and accumulation of a bioaccumulative neurotoxin, methylmercury. Here, we demonstrate that extracellular polymeric substances (EPS), the main components of biofilm matrices, significantly interfere with mercury sulfide precipitation and lead to the formation of nanoparticulate metacinnabar available for microbial methylation, a natural process predominantly responsible for the environmental occurrence of methylmercury. EPS derived from mercury methylating bacteria, particularly Desulfovibrio desulfuricans ND132, substantially increase the methylation potential of nanoparticulate mercury. This is likely due to the abundant aromatic biomolecules in EPS that strongly interact with mercury sulfide via inner-sphere complexation and consequently enhance the short-range structural disorder while mitigating the aggregation of nanoparticulate mercury. The EPS-elevated bioavailability of nanoparticulate mercury to D. desulfuricans ND132 is not induced by dissolution of these nanoparticles in aqueous phase, and may be dictated by cell-nanoparticle interfacial reactions. Our discovery is the first step of mechanistically understanding methylmercury production in biofilms. These new mechanistic insights will help incorporate microbial EPS and particulate-phase mercury into mercury methylation models, and may facilitate the assessment of biogeochemical cycling of other nutrient or toxic elements driven by EPS-producing microorganisms that are prevalent in nature.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Nanopartículas , Matriz Extracelular de Substâncias Poliméricas , Metilação , Sulfetos
17.
Environ Sci Technol ; 54(14): 9008-9014, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32539362

RESUMO

Swine manures generally contain high levels of copper (Cu) resulting from its use as a growth promoter in feedstuff. Pyrolysis can further concentrate Cu whereas decrease its available fraction in swine manures. Here we investigated the speciation transformation of Cu and associated elements in swine manures induced by pyrolysis using multiple X-ray absorption spectroscopies. Results showed that over 82% of Cu existed as Cu(I)-S and Cu(I)-thiolate complexes in swine manures, which were transformed into stable Cu(I)2S during pyrolysis at a low temperature of 300 °C and partially oxidized and desulfurized into Cu(II) compounds at a high temperature of 500 °C. The speciation evolution of Cu in swine manures was consistent with the speciation distribution of sulfur in feedstuff and its following changes in swine manures during pyrolysis. About 58% of phosphorus existed as CaHPO4 and struvite in swine manures, which were gradually transformed into stable Ca-bound species such as hydroxyapatite during pyrolysis. The formation of stable phosphate, together with concentrated carbonates, significantly decreased the available Cu in pyrolyzed manures. These findings suggested that the high levels of S and P in feedstuff profoundly affected the speciation of Cu in the swine manures and derived biochars. This study has important implications to our understanding of the behaviors of heavy metals in manure-derived biochars once entering soil environments.


Assuntos
Esterco , Metais Pesados , Animais , Carvão Vegetal , Cobre/análise , Metais Pesados/análise , Pirólise , Solo , Suínos
18.
J Environ Sci (China) ; 98: 22-30, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33097154

RESUMO

The release of root exudates (REs) provides an important source of soil organic carbon. This work revealed the molecular composition of REs of different plant species including alfalfa (Medicago sativa L.), bean (Phaseolus vulgaris L.), barley (Hordeum vulgare L.), maize (Zea mays), wheat (Triticum aestivum L.), ryegrass (Lolium perenne L.) and pumpkin (Cucurbita maxima) using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). The combination of positive ion mode (+ESI) and negative ion mode (-ESI) increased the number of the molecules detected by ESI FT-ICR MS, and a total of 8758 molecules were identified across all the samples. In detail, lipids and proteins and unsaturated hydrocarbons were more easily detected in +ESI mode, while aromatic compounds with high O/C were readily ionized in -ESI mode, and only 38% of the total assigned formulas were shared by -ESI and +ESI modes. Multivariate statistical analysis of the formulas indicated that the close related plants species secreted REs with similar molecular components. Moreover, the unsaturation degree and nitrogen content were the two key parameters able to distinguish the similarities and differences of molecular components of REs between plant species. The results provided a feasible analysis method for characterization of the molecular components of REs and for the first time characterized the molecular components of REs of a variety of plant species using ESI FT-ICR MS.


Assuntos
Carbono , Ciclotrons , Análise de Fourier , Espectrometria de Massas , Solo
20.
Environ Sci Technol ; 52(20): 11660-11669, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30222318

RESUMO

Interactions between dissolved organic matter (DOM) and iron oxyhydroxides have important environmental and geochemical implications. The present study employed two hematite nanocrystals to investigate the adsorption and molecular fractionation of two typical humic substances (HSs) using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). Hematite with a predominant exposure of {100} facets induced more pronounced adsorption and molecular fractionation of HSs than {001} facets, indicating that the interfacial adsorptive fractionation process of HSs was mediated by exposed facets of hematite. Further exploration of the surface OH groups of the two hematite nanocrystals confirms that the facet-mediated molecular fractionation of HSs was attributable to the abundance of singly iron-atom coordinated -OH sites on the hematite surfaces. Molecules with a high oxidation state and high aromaticity such as oxidized black carbon, polyphenol-like, and tannic-like compounds preferentially formed ligand-exchange complexes with singly coordinated -OH groups on the hematite surfaces, inducing the selective binding and molecular fractionation of HSs at the mineral-water interface. These results demonstrate that singly iron-atom coordinated -OH sites determine DOM adsorption and mediate molecular fractionation on hematite surfaces, and this contributes substantially to our understanding of the molecular mechanisms of iron oxyhydroxide-mediated molecular exchange of DOM in soils and/or sediments.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Adsorção , Fracionamento Químico , Compostos Férricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA