Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 31(1): 66-77, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36045584

RESUMO

Despite the demonstrated immense potential of immune checkpoint inhibitors in various types of cancers, only a minority of patients respond to these therapies. Immunocytokines designed to deliver an immune-activating cytokine directly to the immunosuppressive tumor microenvironment (TME) and block the immune checkpoint simultaneously may provide a strategic advantage over the combination of two single agents. To increase the response rate to checkpoint blockade, in this study, we developed a novel immunocytokine (LH01) composed of the antibody against programmed death-ligand 1 (PD-L1) fused to interleukin (IL)-15 receptor alpha-sushi domain/IL-15 complex. We demonstrate that LH01 efficiently binds mouse or human PD-L1 and maintains IL-15 stimulatory activity. In syngeneic mouse models, LH01 showed improved antitumor efficacy and safety versus anti-PD-L1 plus LH02 (Fc-sushi-IL15) combination and overcame resistance to anti-PD-L1 treatment. Mechanistically, the dual anti-immunosuppressive function of LH01 activated both the innate and adaptive immune responses and induced a favorable and immunostimulatory TME. Furthermore, combination therapy with LH01 and bevacizumab exerts synergistic antitumor effects in an HT29 colorectal xenograft model. Collectively, our results provide supporting evidence that fusion of anti-PD-L1 and IL-15 might be a potent strategy to treat patients with cold tumors or resistance to checkpoint blockade.


Assuntos
Antígeno B7-H1 , Resistencia a Medicamentos Antineoplásicos , Proteínas de Checkpoint Imunológico , Interleucina-15 , Neoplasias , Animais , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Modelos Animais de Doenças , Interleucina-15/metabolismo , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Proteínas de Checkpoint Imunológico/uso terapêutico
2.
Microb Cell Fact ; 21(1): 128, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761329

RESUMO

BACKGROUND: In previous work, we developed an E. coli extracellular secretion platform XTHHly based on the hemolysin A secretion system. It can produce bioactive peptides with simple purification procedures. However, the wider application of this platform is limited by poor secretion efficiency. RESULTS: In this study, we first discovered a positive correlation between the isoelectric point (pI) value of the target protein and the secretion level of the XTHHly system. Given the extremely high secretion level of S tag, we fused it at the N-terminus and created a novel SHTXTHHly system. The SHTXTHHly system significantly increased the secretion levels of antimicrobial peptides (PEW300, LL37, and Aurein 1.2) with full bioactivities, suggesting its excellent capacity for secretory production of bioactive peptides. Furthermore, RGDS, IL-15, and alcohol dehydrogenase were successfully secreted, and their bioactivities were largely maintained in the fusion proteins, indicating the potential applications of the novel system for the rapid determination of protein bioactivities. Finally, using the SHTXTHHly system, we produced the monomeric Fc, which showed a high affinity for Fcγ Receptor I and mediated the antibody-dependent immunological effects of immune cells, demonstrating its potential applications in immunotherapies. CONCLUSIONS: The SHTXTHHly system described here facilitates the secretory production of various types of proteins in E. coli. In comparison to previously reported expression systems, our work enlightens an efficient and cost-effective way to evaluate the bioactivities of target proteins or produce them.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Transporte Biológico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Peptídeos/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
3.
Appl Microbiol Biotechnol ; 106(21): 7039-7050, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184689

RESUMO

Interleukin-15 (IL-15) is a promising candidate for cancer immunotherapy due to its potent immune-activating effects. There are several IL-15 molecules currently in clinical trials but facing shortages of poor half-life, circulation instability, or complicated production and quality control processes. The aim of this study is to design a novel IL-15 superagonist to set out the above difficulties, and we constructed F4RLI consisting of the GS-linker spaced IgG4 Fc fragment, soluble IL-15 Rα (sIL-15Rα), and IL-15(N72D). Using a single plasmid transient transfection in HEK293E cells, the matured F4RLI was secreted in the form of homodimer and got purified by an easy step of protein A affinity chromatography. The F4RLI product can significantly stimulate the proliferation of human CD3+CD8+ T cells and NK cells in vitro. Meanwhile, F4RLI greatly extended the half-life and prolonged the exposure of IL-15 in mice nearly by 28- and 200-fold, respectively, in comparison with that of the IL-15 monomer. In vivo, F4RLI vastly expanded mouse splenic CD8+ T lymphocytes, illustrating its potential in tumor immunotherapy. Further studies showed that the combination of F4RLI with the immune checkpoint blocker atezolizumab played a synergistic effect in treating MC38 mouse tumor by increasing the percentage of CD8+ T cells in tumor tissue. Moreover, the combination therapy of F4RLI with the angiogenesis inhibitor bevacizumab resulted in significant tumor growth suppression in a xenograft human HT-29 mouse model. Overall, our results demonstrate a homodimeric IL-15 superagonist F4RLI with advances in manufacturing processes and biopharmaceutical applications for cancer immunotherapy. KEY POINTS: • The homodimeric structure of F4RLI facilitates its easy production processes and quality control. • The fusion with Fc and sIL-15Rα extends the plasma half-life of IL-15 by about 28-fold. • F4RLI can play synergistic antitumor activity with the PD-1/PD-L1 checkpoint inhibitor or angiogenesis inhibitor.


Assuntos
Produtos Biológicos , Interleucina-15 , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Inibidores da Angiogênese/farmacologia , Antígeno B7-H1/metabolismo , Bevacizumab/farmacologia , Produtos Biológicos/farmacologia , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Meia-Vida , Inibidores de Checkpoint Imunológico/farmacologia , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/metabolismo , Imunoterapia/métodos , Interleucina-15/agonistas , Receptor de Morte Celular Programada 1/metabolismo , Antineoplásicos/farmacologia
4.
Acta Pharm Sin B ; 13(5): 2071-2085, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250170

RESUMO

Developing universal CARs with improved flexible targeting and controllable activities is urgently needed. While several studies have suggested the potential of CD16a in tandem with monoclonal antibodies to construct universal CAR-T cells, the weak affinity between them is one of the limiting factors for efficacy. Herein, we systematically investigated the impact of Fcγ receptor (FcγR) affinity on CAR-T cells properties by constructing universal CARs using Fcγ receptors with different affinities for IgG1 antibodies, namely CD16a, CD32a, and CD64. We demonstrated that the activities of these universal CAR-T cells on tumor cells could be redirected and regulated by IgG1 antibodies. In xenografted mice, 64CAR chimeric Jurkat cells with the highest affinity showed significant antitumor effects in combination with herceptin in the HER2 low expression U251 MG model. However, in the CD20 high expression Raji model, 64CAR caused excessive activation of CAR-T cells, which resulted in cytokine release syndrome (CRS) and the decline of antitumor activity, and 32CAR with a moderate affinity brought the best efficacy. Our work extended the knowledge about FcγR-based universal CAR-T cells and suggested that only the FcγRCAR with an appropriate affinity can offer the optimal antitumor advantages of CAR-T cells.

5.
Bioresour Bioprocess ; 8(1): 115, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38650268

RESUMO

BACKGROUND: Although Escherichia coli has been widely used for the expression of exogenous proteins, the secretory expression in this system is still a big obstacle. As one of the most important secretion pathways, hemolysin A (HlyA) system of E. coli can transport substrates directly from the cytoplasm to extracellular medium without the formation of any periplasmic intermediate, making it an ideal candidate for the development of the secretory production platform for exogenous proteins. RESULTS: In this work, we developed a novel production platform, THHly, based on the HlyA secretion system, and explored its applications in the efficient preparation and quick detection of tag peptides and anti-microbial peptides. In this novel platform the signal sequence of HlyA is fused to the C-terminal of target peptide, with Tobacco Etch Virus (TEV) protease cleavage site and 6*His tag between them. Five tag peptides displayed good secretory properties in E. coli BL21 (DE3), among which T7 tag and S tag were obtained by two rounds of purification steps and TEV cleavage, and maintained their intrinsic immunogenicity. Furthermore, Cecropin A and Melittin, two different types of widely explored anti-microbial peptides, were produced likewise and verified to possess anti-microbial/anti-tumor bioactivities. No significant bacterial growth inhibition was observed during the fusion protein expression, indicating that the fusion form not only mediated the secretion but also decreased the toxicity of anti-microbial peptides (AMPs) to the host bacteria. To the best of our knowledge, this is the first report to achieve the secretory expression of these two AMPs in E. coli with considerable potential for manufacturing and industrialization purposes. CONCLUSIONS: The results demonstrate that the HlyA based novel production platform of E. coli allowed the efficient secretory production and purification of peptides, thus suggesting a promising strategy for the industrialized production of peptide pharmaceuticals or reagents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA