Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585716

RESUMO

Immunoglobulin (IGH, IGK, IGL) loci in the human genome are highly polymorphic regions that encode the building blocks of the light and heavy chain IG proteins that dimerize to form antibodies. The processes of V(D)J recombination and somatic hypermutation in B cells are responsible for creating an enormous reservoir of highly specific antibodies capable of binding a vast array of possible antigens. However, the antibody repertoire is fundamentally limited by the set of variable (V), diversity (D), and joining (J) alleles present in the germline IG loci. To better understand how the germline IG haplotypes contribute to the expressed antibody repertoire, we combined genome sequencing of the germline IG loci with single-cell transcriptome sequencing of B cells from the same donor. Sequencing and assembly of the germline IG loci captured the IGH locus in a single fully-phased contig where the maternal and paternal contributions to the germline V, D, and J repertoire can be fully resolved. The B cells were collected following a measles, mumps, and rubella (MMR) vaccination, resulting in a population of cells that were activated in response to this specific immune challenge. Single-cell, full-length transcriptome sequencing of these B cells resulted in whole transcriptome characterization of each cell, as well as highly-accurate consensus sequences for the somatically rearranged and hypermutated light and heavy chain IG transcripts. A subset of antibodies synthesized based on their consensus heavy and light chain transcript sequences demonstrated binding to measles antigens and neutralization of measles live virus.

2.
Nat Commun ; 15(1): 5414, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926353

RESUMO

Borgs are huge extrachromosomal elements (ECE) of anaerobic methane-consuming "Candidatus Methanoperedens" archaea. Here, we used nanopore sequencing to validate published complete genomes curated from short reads and to reconstruct new genomes. 13 complete and four near-complete linear genomes share 40 genes that define a largely syntenous genome backbone. We use these conserved genes to identify new Borgs from peatland soil and to delineate Borg phylogeny, revealing two major clades. Remarkably, Borg genes encoding nanowire-like electron-transferring cytochromes and cell surface proteins are more highly expressed than those of host Methanoperedens, indicating that Borgs augment the Methanoperedens activity in situ. We reconstructed the first complete 4.00 Mbp genome for a Methanoperedens that is inferred to be a Borg host and predicted its methylation motifs, which differ from pervasive TC and CC methylation motifs of the Borgs. Thus, methylation may enable Methanoperedens to distinguish their genomes from those of Borgs. Very high Borg to Methanoperedens ratios and structural predictions suggest that Borgs may be capable of encapsulation. The findings clearly define Borgs as a distinct class of ECE with shared genomic signatures, establish their diversification from a common ancestor with genetic inheritance, and raise the possibility of periodic existence outside of host cells.


Assuntos
Genoma Arqueal , Metano , Filogenia , Metano/metabolismo , Oxirredução , Archaea/genética , Archaea/metabolismo , Sequenciamento por Nanoporos/métodos , Metilação de DNA , Microbiologia do Solo
3.
Nat Biotechnol ; 40(10): 1488-1499, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35637420

RESUMO

High-order three-dimensional (3D) interactions between more than two genomic loci are common in human chromatin, but their role in gene regulation is unclear. Previous high-order 3D chromatin assays either measure distant interactions across the genome or proximal interactions at selected targets. To address this gap, we developed Pore-C, which combines chromatin conformation capture with nanopore sequencing of concatemers to profile proximal high-order chromatin contacts at the genome scale. We also developed the statistical method Chromunity to identify sets of genomic loci with frequencies of high-order contacts significantly higher than background ('synergies'). Applying these methods to human cell lines, we found that synergies were enriched in enhancers and promoters in active chromatin and in highly transcribed and lineage-defining genes. In prostate cancer cells, these included binding sites of androgen-driven transcription factors and the promoters of androgen-regulated genes. Concatemers of high-order contacts in highly expressed genes were demethylated relative to pairwise contacts at the same loci. Synergies in breast cancer cells were associated with tyfonas, a class of complex DNA amplicons. These results rigorously link genome-wide high-order 3D interactions to lineage-defining transcriptional programs and establish Pore-C and Chromunity as scalable approaches to assess high-order genome structure.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Androgênios , Cromatina/genética , Humanos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA