Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 24(Pt 1): 110-141, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009552

RESUMO

A critical early phase for any synchrotron beamline involves detailed testing, characterization and commissioning; this is especially true of a beamline as ambitious and complex as the Imaging & Medical Beamline (IMBL) at the Australian Synchrotron. IMBL staff and expert users have been performing precise experiments aimed at quantitative characterization of the primary polychromatic and monochromatic X-ray beams, with particular emphasis placed on the wiggler insertion devices (IDs), the primary-slit system and any in vacuo and ex vacuo filters. The findings from these studies will be described herein. These results will benefit IMBL and other users in the future, especially those for whom detailed knowledge of the X-ray beam spectrum (or `quality') and flux density is important. This information is critical for radiotherapy and radiobiology users, who ultimately need to know (to better than 5%) what X-ray dose or dose rate is being delivered to their samples. Various correction factors associated with ionization-chamber (IC) dosimetry have been accounted for, e.g. ion recombination, electron-loss effects. A new and innovative approach has been developed in this regard, which can provide confirmation of key parameter values such as the magnetic field in the wiggler and the effective thickness of key filters. IMBL commenced operation in December 2008 with an Advanced Photon Source (APS) wiggler as the (interim) ID. A superconducting multi-pole wiggler was installed and operational in January 2013. Results are obtained for both of these IDs and useful comparisons are made. A comprehensive model of the IMBL has been developed, embodied in a new computer program named spec.exe, which has been validated against a variety of experimental measurements. Having demonstrated the reliability and robustness of the model, it is then possible to use it in a practical and predictive manner. It is hoped that spec.exe will prove to be a useful resource for synchrotron science in general, and for hard X-ray beamlines, whether they are based on bending magnets or insertion devices, in particular. In due course, it is planned to make spec.exe freely available to other synchrotron scientists.


Assuntos
Radiometria , Síncrotrons , Austrália , Humanos , Reprodutibilidade dos Testes , Raios X
2.
J Synchrotron Radiat ; 24(Pt 4): 854-865, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28664893

RESUMO

Therapeutic applications of synchrotron X-rays such as microbeam (MRT) and minibeam (MBRT) radiation therapy promise significant advantages over conventional clinical techniques for some diseases if successfully transferred to clinical practice. Preclinical studies show clear evidence that a number of normal tissues in animal models display a tolerance to much higher doses from MRT compared with conventional radiotherapy. However, a wide spread in the parameters studied makes it difficult to make any conclusions about the associated tumour control or normal tissue complication probabilities. To facilitate more systematic and reproducible preclinical synchrotron radiotherapy studies, a dedicated preclinical station including small-animal irradiation stage was designed and installed at the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron. The stage was characterized in terms of the accuracy and reliability of the vertical scanning speed, as this is the key variable in dose delivery. The measured speed was found to be within 1% of the nominal speed for the range of speeds measured by an interferometer. Furthermore, dose measurements confirm the expected relationship between speed and dose and show that the measured dose is independent of the scan direction. Important dosimetric parameters such as peak dose, valley dose, the collimator output factor and peak-to-valley dose ratio are presented for 5 mm × 5 mm, 10 mm × 10 mm and 20 mm × 20 mm field sizes. Finally, a feasibility study on three glioma-bearing rats was performed. MRT and MBRT doses were prescribed to achieve an average dose of 65 Gy in the target, and magnetic resonance imaging follow-up was performed at various time points after irradiation to follow the tumour volume. Although it is impossible to draw conclusions on the different treatments with such a small number of animals, the feasibility of end-to-end preclinical synchrotron radiotherapy studies using the IMBL preclinical stage is demonstrated.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioma/radioterapia , Doses de Radiação , Síncrotrons , Animais , Austrália , Estudos de Viabilidade , Dosagem Radioterapêutica , Ratos
3.
Phys Med ; 121: 103363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653119

RESUMO

Dosimetry audits for passive motion management require dynamically-acquired measurements in a moving phantom to be compared to statically calculated planned doses. This study aimed to characterise the relationship between planning and delivery errors, and the measured dose in the Imaging and Radiation Oncology Core (IROC) thorax phantom, to assess different audit scoring approaches. Treatment plans were created using a 4DCT scan of the IROC phantom, equipped with film and thermoluminescent dosimeters (TLDs). Plans were created on the average intensity projection from all bins. Three levels of aperture complexity were explored: dynamic conformal arcs (DCAT), low-, and high-complexity volumetric modulated arcs (VMATLo, VMATHi). Simulated-measured doses were generated by modelling motion using isocenter shifts. Various errors were introduced including incorrect setup position and target delineation. Simulated-measured film doses were scored using gamma analysis and compared within specific regions of interest (ROIs) as well as the entire film plane. Positional offsets were estimated based on isodoses on the film planes, and point doses within TLD contours were compared. Motion-induced differences between planned and simulated-measured doses were evident even without introduced errors Gamma passing rates within target-centred ROIs correlated well with error-induced dose differences, while whole film passing rates did not. Isodose-based setup position measurements demonstrated high sensitivity to errors. Simulated point doses at TLD locations yielded erratic responses to introduced errors. ROI gamma analysis demonstrated enhanced sensitivity to simulated errors compared to whole film analysis. Gamma results may be further contextualized by other metrics such as setup position or maximum gamma.


Assuntos
Movimento , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Tórax , Tórax/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radiometria/instrumentação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Tomografia Computadorizada Quadridimensional , Movimento (Física)
4.
Clin Breast Cancer ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38906720

RESUMO

The objective of this scoping review is to evaluate the potential of Magnetic Resonance Imaging (MRI) and to determine which of the available MRI techniques reported in the literature are the most promising for assessing treatment response in breast cancer patients following neoadjuvant radiotherapy (NRT). Ovid Medline, Embase, CINAHL, and Cochrane databases were searched to identify relevant studies published from inception until March 13, 2023. After primary selection, 2 reviewers evaluated each study using a standardized data extraction template, guided by set inclusion and exclusion criteria. A total of 5 eligible studies were selected. The positive and negative predictive values for MRI predicting pathological complete response across the studies were 67% to 88% and 76% to 85%, respectively. MRI's potential in assessing postradiotherapy tumor sizes was greater for volume measurements than uni-dimensional longest diameter measurements; however, overestimation in surgical tumor sizes was observed. Apparent diffusion coefficient (ADC) values and Time to Enhance (TTE) was seen to increase post-NRT, with a notable difference between responders and nonresponders at 6 months, indicating a potential role in assessing treatment response. In conclusion, this review highlights tumor volume measurements, ADC, and TTE as promising MRI metrics for assessing treatment response post-NRT in breast cancer. However, further research with larger cohorts is needed to confirm their utility. If MRI can accurately identify responders from nonresponders to NRT, it could enable a more personalized and tailored treatment approach, potentially minimizing radiation therapy related toxicity and enhancing cosmetic outcomes.

5.
J Biol Inorg Chem ; 18(3): 323-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23322169

RESUMO

Members of the ZIP (SLC39A) and ZnT (SLC30A) families of transmembrane domain proteins are predicted to transport the essential transition metal zinc across membranes, regulating cellular zinc content and distribution via uptake and efflux at the outer plasma and organellar membranes. Twenty-four ZIP and ZnT proteins are encoded in mammalian genomes, raising questions of whether all actually transport zinc, whether several function together in the same tissues/cell types, and how the activity of these transporters is coordinated. To address these questions, we have taken advantage of the ability to manipulate several genes simultaneously in targeted cell types in Drosophila. Previously we reported zinc toxicity phenotypes caused by combining overexpression of a zinc uptake gene, dZip42C.1, with suppression of a zinc efflux gene, dZnT63C. Here we show that these phenotypes can be used as a sensitized in vivo system to detect subtle alterations in zinc transport activity that would be buffered in healthy cells. Using two adult tissues, the fly eye and midline (thorax/abdomen), we find that when overexpressed, most of the 17 Drosophila Zip and ZnT genes modify the zinc toxicity phenotypes in a manner consistent with their predicted zinc transport activity. In most cases, we can reconcile that activity with the cellular localization of an enhanced green fluorescent protein tagged version of the protein. Additionally, targeted suppression of each gene by RNA interference reveals several of the fly Zip and ZnT genes are required in the eye, indicating that numerous independent zinc transport genes are acting together in a single tissue.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Drosophila/genética , Drosophila/genética , Zinco/metabolismo , Zinco/toxicidade , Animais , Proteínas de Transporte de Cátions/análise , Proteínas de Transporte de Cátions/metabolismo , Drosophila/anatomia & histologia , Drosophila/metabolismo , Proteínas de Drosophila/análise , Proteínas de Drosophila/metabolismo , Olho/metabolismo , Transporte de Íons , Fenótipo , Interferência de RNA , Regulação para Cima
6.
Phys Med ; 112: 102632, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406592

RESUMO

PURPOSE: Stereotactic Body Radiotherapy (SBRT) for lung tumours has become a mainstay of clinical practice worldwide. Measurements in anthropomorphic phantoms enable verification of patient dose in clinically realistic scenarios. Correction factors for reporting dose to the tissue equivalent materials in a lung phantom are presented in the context of a national dosimetry audit for SBRT. Analysis of dosimetry audit results is performed showing inaccuracies of common dose calculation algorithms in soft tissue lung target, inhale lung material and at tissue interfaces. METHODS: Monte Carlo based simulation of correction factors for detectors in non-water tissue was performed for the soft tissue lung target and inhale lung materials of a modified CIRS SBRT thorax phantom. The corrections were determined for Gafchromic EBT3 Film and PTW 60019 microDiamond detectors used for measurements of 168 SBRT lung plans in an end-to-end dosimetry audit. Corrections were derived for dose to medium (Dm,m) and dose to water (Dw,w) scenarios. RESULTS: Correction factors were up to -3.4% and 9.2% for in field and out of field lung respectively. Overall, application of the correction factors improved the measurement-to-plan dose discrepancy. For the soft tissue lung target, agreement between planned and measured dose was within average of 3% for both film and microDiamond measurements. CONCLUSIONS: The correction factors developed for this work are provided for clinical users to apply to commissioning measurements using a commercially available thorax phantom where inhomogeneity is present. The end-to-end dosimetry audit demonstrates dose calculation algorithms can underestimate dose at lung tumour/lung tissue interfaces by an average of 2-5%.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Radiocirurgia/métodos , Pulmão , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Radiometria/métodos , Tórax , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Dosagem Radioterapêutica , Algoritmos , Método de Monte Carlo
7.
PeerJ ; 11: e15831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601253

RESUMO

Background: The Australian citrus industry remains one of the few in the world to be unaffected by the African and the Asian citrus psyllids, Trioza erytreae Del Guercio and Diaphorina citri Kuwayama, respectively, and the diseases their vectored bacteria can cause. Surveillance, early detection, and strict quarantine measures are therefore fundamental to safeguard Australian citrus. However, long-term targeted surveillance for exotic citrus pests can be a time-consuming and expensive activity, often relying on manually screening large numbers of trap samples and morphological identification of specimens, which requires a high level of taxonomic knowledge. Methods: Here we evaluated the use of non-destructive insect metabarcoding for exotic pest surveillance in citrus orchards. We conducted an 11-week field trial, between the months of December and February, at a horticultural research farm (SuniTAFE Smart Farm) in the Northwest of Victoria, Australia, and processed more than 250 samples collected from three types of invertebrate traps across four sites. Results: The whole-community metabarcoding data enabled comparisons between different trapping methods, demonstrated the spatial variation of insect diversity across the same orchard, and highlighted how comprehensive assessment of insect biodiversity requires use of multiple complimentary trapping methods. In addition to revealing the diversity of native psyllid species in citrus orchards, the non-targeted metabarcoding approach identified a diversity of other pest and beneficial insects and arachnids within the trap bycatch, and recorded the presence of the triozid Casuarinicola cf warrigalensis for the first time in Victoria. Ultimately, this work highlights how a non-targeted surveillance approach for insect monitoring coupled with non-destructive DNA metabarcoding can provide accurate and high-throughput species identification for biosecurity and biodiversity monitoring.


Assuntos
Citrus , Hemípteros , Animais , Humanos , Hemípteros/genética , Biosseguridade , Insetos/genética , Vitória , Ligante de CD40
8.
J Exp Biol ; 215(Pt 18): 3254-65, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22693027

RESUMO

The heavy metal zinc is an essential component of the human diet and is incorporated as a structural component in up to 10% of all mammalian proteins. The physiological importance of zinc homeostasis at the cellular level and the molecular mechanisms involved in this process have become topics of increasing interest in recent years. We have performed a systematic functional characterization of the majority of the predicted Drosophila Zip (zinc/iron regulated transporter-related protein) and ZnT genes, using the Gal4-UAS system to carry out both ubiquitous and targeted over-expression and suppression studies for 13 of the 17 putative zinc transport genes identified to date. We found that six of these 13 genes may be essential for fly viability and that three of the remaining seven demonstrate over-expression phenotypes. Our findings reaffirm the previously proposed function of dZnT63C (CG17723: FBgn005432) as an important zinc efflux protein and indicate that the fly homolog of hZip1, dZip42C.1 (CG9428: FBgn0033096), is a strong zinc importer in Drosophila. By combining over-expression of dZip42C.1 with suppression of dZnT63C we were able to produce easily identifiable zinc toxicosis phenotypes, which can be rescued or worsened by modifying dietary zinc content. Our findings show that a genetically based zinc toxicosis situation can be therapeutically treated or exacerbated by modifications to the diet, providing a sensitized background for future, more detailed studies of Zip/ZnT function.


Assuntos
Proteínas de Transporte/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Genes de Insetos/genética , Zinco/metabolismo , Zinco/toxicidade , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Proteínas de Transporte/metabolismo , Biologia Computacional , Dieta , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Olho/efeitos dos fármacos , Olho/crescimento & desenvolvimento , Olho/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Discos Imaginais/anatomia & histologia , Discos Imaginais/efeitos dos fármacos , Discos Imaginais/metabolismo , Fenótipo , Transporte Proteico/efeitos dos fármacos , Homologia de Sequência do Ácido Nucleico , Espectrometria por Raios X , Asas de Animais/anatomia & histologia , Asas de Animais/efeitos dos fármacos , Asas de Animais/metabolismo
9.
Phys Imaging Radiat Oncol ; 24: 21-29, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36148153

RESUMO

Background and Purpose: A survey on the patterns of practice of respiratory motion management (MM) was distributed to 111 radiation therapy facilities to inform the development of an end-to-end dosimetry audit including respiratory motion. Materials and methods: The survey (distributed via REDCap) asked facilities to provide information specific to the combinations of MM techniques (breath-hold gating - BHG, internal target volume - ITV, free-breathing gating - FBG, mid-ventilation - MidV, tumour tracking - TT), sites treated (thorax, upper abdomen, lower abdomen), and fractionation regimes (conventional, stereotactic ablative body radiation therapy - SABR) used in their clinic. Results: The survey was completed by 78% of facilities, with 98% of respondents indicating that they used at least one form of MM. The ITV approach was common to all MM-users, used for thoracic treatments by 89% of respondents, and upper and lower abdominal treatments by 38%. BHG was the next most prevalent (41% of MM users), with applications in upper abdominal and thoracic treatment sites (28% vs 25% respectively), but minimal use in the lower abdomen (9%). FBG and TT were utilised sparingly (17%, 7% respectively), and MidV was not selected at all. Conclusions: Two distinct treatment workflows (including use of motion limitation, imaging used for motion assessment, dose calculation, and image guidance procedures) were identified for the ITV and BHG MM techniques, to form the basis of the initial audit. Thoracic SABR with the ITV approach was common to nearly all respondents, while upper abdominal SABR using BHG stood out as more technically challenging. Other MM techniques were sparsely used, but may be considered for future audit development.

10.
Pest Manag Sci ; 77(10): 4555-4563, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34085385

RESUMO

BACKGROUND: The global pest spotted winged drosophila (Drosophila suzukii) continues to have a significant economic impact on fruit production in areas where it is established, in addition to newly invaded ranges. Management activities spanning national biosecurity responses to farm-scale pest control are limited by the inability to predict the timing and severity of seasonal outbreaks of D. suzukii and its climatic drivers. RESULTS: Here, we compiled and analysed data on international seasonal abundances for D. suzukii under different climates, crop types and management contexts to improve the predictability of seasonal population dynamics. In relating seasonal abundances to environmental predictors, specifically temperature, we found strong negative effects of exposure to high and low temperatures during the preceding month. Unlike most regional studies on D. suzukii phenology that focus on temperature in the physiological development range, we show that thermal extremes better explain seasonal population fluctuations. CONCLUSION: Although trap catches remain an indirect measure of infestations and must be interpreted carefully in terms of crop risk, our results should support monitoring programmes through enhanced knowledge of the climatic factors affecting D. suzukii population activity. The negative impact of high temperatures suggests that late-season management strategies focusing on manipulating crop microclimates to temperatures above 25 °C can reduce D. suzukii abundance. We show that early season abundance is modulated by climate, particularly the depth of cold extremes experienced in the preceding time interval. These associations may be further developed into early-season crop risk forecasts to support monitoring programs. © 2021 Society of Chemical Industry.


Assuntos
Drosophila , Controle de Insetos , Animais , Espécies Introduzidas , Estações do Ano , Temperatura
11.
Phys Imaging Radiat Oncol ; 20: 40-45, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34722939

RESUMO

BACKGROUND AND PURPOSE: Synthetic diamond detectors offer real time measurement of dose in radiotherapy applications which require high spatial resolution. Additional considerations and corrections are required for measurements where the diamond detector is orientated at various angles to the incident beam. This study investigated diamond detectors for end-to-end testing of Stereotactic Body Radiotherapy (SBRT) and Stereotactic Radiosurgery (SRS) in the context of dosimetry audits. MATERIAL AND METHODS: Seven individual diamond detectors were investigated and compared with respect to warm up stability, dose-rate dependence, linearity, detector shadowing, energy response, cross-calibration, angular dependence and positional sensitivity in SBRT and SRS. RESULTS: Large variation in the cross calibration factors was found between the seven individual detectors. For each detector, the energy dependence in the cross calibration factor was on average <0.6% across the beam qualities investigated (Co-60 Gamma Knife, and MV beams with TPR20,10 0.684-0.733). The angular corrections for individual fields were up to 5%, and varied with field size. However, the average angular dependence for all fields in a typical SRS treatment delivery was <1%. The overall measurement uncertainty was 3.6% and 3.1% (2σ) for an SRS and SBRT treatment plan respectively. CONCLUSION: Synthetic diamond detectors were found to be reliable and robust for end-to-end dosimetry in SBRT and SRS applications. Orientation of the detector relative to the beam axis is an important consideration, as significant corrections are required for angular dependence.

12.
Med Phys ; 48(10): 6184-6197, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34287963

RESUMO

PURPOSE: The aim of this study is to investigate overdose to organs at risk (OARs) observed in dosimetry audits in Monte Carlo (MC) algorithms and Linear Boltzmann Transport Equation (LBTE) algorithms. The impact of penumbra modeling on OAR dose was assessed with the adjustment of MC modeling parameters and the clinical relevance of the audit cases was explored with a planning study of spine and head and neck (H&N) patient cases. METHODS: Dosimetric audits performed by the Australian Clinical Dosimetry Service (ACDS) of 43 anthropomorphic spine plans and 1318 C-shaped target plans compared the planned dose to doses measured with ion chamber, microdiamond, film, and ion chamber array. An MC EGSnrc model was created to simulate the C-shape target case. The electron cut-off energy Ecut(kinetic) was set at 500, 200, and 10 keV, and differences between 1 and 3 mm voxel were calculated. A planning study with 10 patient stereotactic body radiotherapy (SBRT) spine plans and 10 patient H&N plans was calculated in both Acuros XB (AXB) v15.6.06 and Anisotropic Analytical Algorithm (AAA) v15.6.06. The patient contour was overridden to water as only the penumbral differences between the two different algorithms were under investigation. RESULTS: The dosimetry audit results show that for the SBRT spine case, plans calculated in AXB are colder than what is measured in the spinal cord by 5%-10%. This was also observed for other audit cases where a C-shape target is wrapped around an OAR where the plans were colder by 3%-10%. Plans calculated with Monaco MC were colder than measurements by approximately 7% with the OAR surround by a C-shape target, but these differences were not noted in the SBRT spine case. Results from the clinical patient plans showed that the AXB was on average 7.4% colder than AAA when comparing the minimum dose in the spinal cord OAR. This average difference between AXB and AAA reduced to 4.5% when using the more clinically relevant metric of maximum dose in the spinal cord. For the H&N plans, AXB was cooler on average than AAA in the spinal cord OAR (1.1%), left parotid (1.7%), and right parotid (2.3%). The EGSnrc investigation also noted similar, but smaller differences. The beam penumbra modeled by Ecut(kinetic)  = 500 keV was steeper than the beam penumbra modeled by Ecut(kinetic)  = 10 keV as the full scatter is not accounted for, which resulted in less dose being calculated in a central OAR region where the penumbra contributes much of the dose. The dose difference when using 2.5 mm voxels of the center of the OAR between 500 and 10 keV was 3%, reducing to 1% between 200 and 10 keV. CONCLUSIONS: Lack of full penumbral modeling due to approximations in the algorithms in MC based or LBTE algorithms are a contributing factor as to why these algorithms under-predict the dose to OAR when the treatment volume is wrapped around the OAR. The penumbra modeling approximations also contribute to AXB plans predicting colder doses than AAA in areas that are in the vicinity of beam penumbra. This effect is magnified in regions where there are many beam penumbras, for example in the spinal cord for spine SBRT cases.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Algoritmos , Austrália , Humanos , Método de Monte Carlo , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
13.
Phys Med ; 84: 265-273, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33773909

RESUMO

PURPOSE: Current quality assurance of radiotherapy involving bony regions generally utilises homogeneous phantoms and dose calculations, ignoring the challenges of heterogeneities with dosimetry problems likely occurring around bone. Anthropomorphic phantoms with synthetic bony materials enable realistic end-to-end testing in clinical scenarios. This work reports on measurements and calculated corrections required to directly report dose in bony materials in the context of comprehensive end-to-end dosimetry audit measurements (63 plans, 6 planning systems). MATERIALS AND METHODS: Radiochromic film and microDiamond measurements were performed in an anthropomorphic spine phantom containing bone equivalent materials. Medium dependent correction factors, kmed, were established using 6 MV and 10 MV Linear Accelerator Monte Carlo simulations to account for the detectors being calibrated in water, but measuring in regions of bony material. Both cortical and trabecular bony material were investigated for verification of dose calculations in dose-to-medium (Dm,m) and dose-to-water (Dw,w) scenarios. RESULTS: For Dm,m calculations, modelled correction factors for cortical and trabecular bone in film measurements, and for trabecular bone in microDiamond measurements were 0.875(±0.1%), 0.953(±0.3%) and 0.962(±0.4%), respectively. For Dw,w calculations, the corrections were 0.920(±0.1%), 0.982(±0.3%) and 0.993(±0.4%), respectively. In the audit, application of the correction factors improves the mean agreement between treatment plans and measured microDiamond dose from -2.4%(±3.9%) to 0.4%(±3.7%). CONCLUSION: Monte Carlo simulations provide a method for correcting the dose measured in bony materials allowing more accurate comparison with treatment planning system doses. In verification measurements, algorithm specific correction factors should be applied to account for variations in bony material for calculations based on Dm,m and Dw,w.


Assuntos
Radiocirurgia , Algoritmos , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
14.
Radiother Oncol ; 159: 106-111, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741471

RESUMO

PURPOSE: To promote consistency in clinical trials by recommending a uniform framework as it relates to radiation transport and dose calculation in water versus in medium. METHODS: The Global Quality Assurance of Radiation Therapy Clinical Trials Harmonisation Group (GHG; www.rtqaharmonization.org) compared the differences between dose to water in water (Dw,w), dose to water in medium (Dw,m), and dose to medium in medium (Dm,m). This was done based on a review of historical frameworks, existing literature and standards, clinical issues in the context of clinical trials, and the trajectory of radiation dose calculations. Based on these factors, recommendations were developed. RESULTS: No framework was found to be ideal or perfect given the history, complexity, and current status of radiation therapy. Nevertheless, based on the evidence available, the GHG established a recommendation preferring dose to medium in medium (Dm,m). CONCLUSIONS: Dose to medium in medium (Dm,m) is the preferred dose calculation and reporting framework. If an institution's planning system can only calculate dose to water in water (Dw,w), this is acceptable.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Água , Consenso , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica
15.
J Biol Inorg Chem ; 15(4): 621-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20151166

RESUMO

The vinegar fly Drosophila melanogaster is proving to be an excellent system to study the in vivo regulation of the essential metal copper. The Ctr1A/B and DmATP7 copper transport proteins have well-established roles in Drosophila copper uptake and efflux, respectively. Both Ctr1A and DmATP7 are essential genes, whereas Ctr1B mutants are viable but die in excess or depleted copper conditions. Less is known about the tissue-specific requirements for these three genes and how they interact to maintain copper homeostasis in different cell types. Here, we use targeted overexpression and suppression of each gene to examine these questions in vivo. We find that in the epidermal cells that form the adult thoracic and abdominal cuticle, Ctr1A plays a major role in copper uptake, whereas Ctr1B plays only a minor supporting role and DmATP7, as previously shown, is essential for transfer of copper to the trans-Golgi network. We also find that the copper chaperone dSco1 appears necessary for supplying the mitochondria with copper in these tissues. In contrast, in the developing Drosophila eye, DmATP7 appears to be non-essential unless copper levels in these cells are artificially elevated. Again, Ctr1A is the main copper uptake gene in the eye, but when ectopically expressed, Ctr1B has greater phenotypic effects than Ctr1A. Furthermore, Ctr1A and Ctr1B show a dramatic synergistic interaction, indicating their relationship is more complicated than a simply additive one and that they may in fact act cooperatively for optimal copper import.


Assuntos
Cobre/metabolismo , Drosophila/anatomia & histologia , Drosophila/metabolismo , Animais , Transporte Biológico , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Olho/crescimento & desenvolvimento , Absorção Intestinal , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Especificidade de Órgãos , Pigmentação
16.
Med Phys ; 46(12): 5878-5887, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494941

RESUMO

PURPOSE: Consistency between different international quality assurance groups is important in the progress toward similar standards and expectations in radiotherapy dosimetry around the world, and in the context of consistent clinical trial data from international trial participants. This study compares the dosimetry audit methodology and results of two international quality assurance groups performing a side-by-side comparison at the same radiotherapy department, and interrogates the ability of the audits to detect deliberately introduced errors. METHODS: A comparison of the core dosimetry components of reference and non-reference audits was conducted by the Imaging and Radiation Oncology Core (IROC, Houston, USA) and the Australian Clinical Dosimetry Service (ACDS, Melbourne, Australia). A set of measurements were conducted over 2 days at an Australian radiation therapy facility in Melbourne. Each group evaluated the reference dosimetry, output factors, small field output factors, percentage depth dose (PDD), wedge, and off-axis factors according to their standard protocols. IROC additionally investigated the Electron PDD and the ACDS investigated the effect of heterogeneities. In order to evaluate and compare the performance of these audits under suboptimal conditions, artificial errors in percentage depth dose (PDD), EDW, and small field output factors were introduced into the 6 MV beam model to simulate potential commissioning/modeling errors and both audits were tested for their sensitivity in detecting these errors. RESULTS: With the plans from the clinical beam model, almost all results were within tolerance and at an optimal pass level. Good consistency was found between the two audits as almost all findings were consistent between them. Only two results were different between the results of IROC and the ACDS. The measurements of reference FFF photons showed a discrepancy of 0.7% between ACDS and IROC due to the inclusion of a 0.5% nonuniformity correction by the ACDS. The second difference between IROC and the ACDS was seen with the lung phantom. The asymmetric field behind lung measured by the ACDS was slightly (0.3%) above the ACDS's pass (optimal) level of 3.3%. IROC did not detect this issue because their measurements were all assessed in a homogeneous phantom. When errors were deliberately introduced neither audit was sensitive enough to pick up a 2% change to the small field output factors. The introduced PDD change was flagged by both audits. Similarly, the introduced error of using 25° wedge instead of 30° wedge was detectible in both audits as out of tolerance. CONCLUSIONS: Despite different equipment, approach, and scope of measurements in on-site audits, there were clear similarities between the results from the two groups. This finding is encouraging in the context of a global harmonized approach to radiotherapy quality assurance and dosimetry audit.


Assuntos
Auditoria Clínica , Radiometria/normas , Padrões de Referência
17.
Med Phys ; 46(7): 3298-3305, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31087374

RESUMO

PURPOSE: Dosimetry of ionizing radiation in the presence of strong magnetic fields is gaining increased relevance in light of advances for MRI-guided radiation therapy. While the impact of strong magnetic fields on the overall response of ionization chambers has been simulated and measured before, this work investigates the local impact of the magnetic field on dose response in an ion chamber. High-resolution 1D and 2D response maps have been created for two small clinical thimble ionization chambers, the PinPoint chambers 31006 and 31014 (Physikalisch Technische Werkstaetten Freiburg, Germany). METHODS: Working on the Imaging and Medical Beam Line of the Australian Synchrotron an intense kilovoltage radiation beam with very low divergence, collimated to 0.1 mm was used to scan the chambers by moving them on a 2D motion platform. Measured current and beam position were correlated to create the response maps. Small neodymium magnets were used to create a field of about 0.25 T. Chamber axis, magnetic field, and beam direction were perpendicular to each other. Measurements were performed with both orientations of the magnetic field as well as without it. Chamber biases of 5 and 250 V in both polarities were used. RESULTS: The local distribution of the response of small thimble-type ionization chambers was found to be impacted by a magnetic field. Depending on the orientation of the magnetic field, the chamber response near the stem was either enhanced or reduced with the response near the tip behaving the opposite way. Local changes were in the order of up to 40% compared to measurements without the magnetic field present. Bending of the central electrode was observed for the chamber with the steel electrode. The size of the volume of reduced collection near the guard electrode was impacted by the magnetic field. As the here investigated beam and field parameters differ from those of clinical systems, quantitatively different results would be expected for the latter. However, the gyroradii encountered here were similar to those of a 6-7 MV MRI linac with a 1.5 T magnet. CONCLUSIONS: Magnetic fields impact the performance of ionization chambers also on a local level. For practical measurements this might mean a change in the effective point of measurement, in addition to any global corrections. Further knowledge about the local response will help in selecting or constructing optimized chambers for use in magnetic fields.


Assuntos
Campos Magnéticos , Radiometria/instrumentação , Método de Monte Carlo , Aceleradores de Partículas
18.
Australas Phys Eng Sci Med ; 41(4): 781-808, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30361918

RESUMO

The Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) Radiation Oncology Specialty Group (ROSG) formed a series of working groups to develop recommendations for guidance of radiation oncology medical physics practice within the Australasian setting. These recommendations provide a standard for safe work practices and quality control. It is the responsibility of the medical physicist to ensure that locally available equipment and procedures are sufficiently sensitive to establish compliance. The recommendations are endorsed by the ROSG, have been subject to independent expert reviews and have also been approved by the ACPSEM Council. For the Australian audience, these recommendations should be read in conjunction with the Tripartite Radiation Oncology Practice Standards and should be read in conjunction with relevant national, state or territory legislation which take precedence over the ACPSEM publication Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group, RANZCR, 2011a; Kron et al. Clin Oncol 27(6):325-329, 2015; Radiation Oncology Reform Implementation Committee (RORIC) Quality Working Group, RANZCR, 2018a, b).


Assuntos
Saúde Ocupacional/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/normas , Radioterapia/normas , Australásia , Engenharia Biomédica/organização & administração , Engenharia Biomédica/normas , Física Médica/organização & administração , Física Médica/normas , Humanos , Guias de Prática Clínica como Assunto
19.
Phys Imaging Radiat Oncol ; 6: 5-11, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33458381

RESUMO

BACKGROUND AND PURPOSE: Independent dosimetry audits improve quality and safety of radiation therapy. This work reports on design and findings of a comprehensive 3D conformal radiotherapy (3D-CRT) Level III audit. MATERIALS AND METHODS: The audit was conducted as onsite audit using an anthropomorphic thorax phantom in an end-to-end test by the Australian Clinical Dosimetry Service (ACDS). Absolute dose point measurements were performed with Farmer-type ionization chambers. The audited treatment plans included open and half blocked fields, wedges and lung inhomogeneities. Audit results were determined as Pass Optimal Level (deviations within 3.3%), Pass Action Level (greater than 3.3% but within 5%) and Out of Tolerance (beyond 5%), as well as Reported Not Scored (RNS). The audit has been performed between July 2012 and January 2018 on 94 occasions, covering approximately 90% of all Australian facilities. RESULTS: The audit pass rate was 87% (53% optimal). Fifty recommendations were given, mainly related to planning system commissioning. Dose overestimation behind low density inhomogeneities by the analytical anisotropic algorithm (AAA) was identified across facilities and found to extend to beam setups which resemble a typical breast cancer treatment beam placement. RNS measurements inside lung showed a variation in the opposite direction: AAA under-dosed a target beyond lung and over-dosed the lung upstream and downstream of the target. Results also highlighted shortcomings of some superposition and convolution algorithms in modelling large angle wedges. CONCLUSIONS: This audit showed that 3D-CRT dosimetry audits remain relevant and can identify fundamental global and local problems that also affect advanced treatments.

20.
Phys Imaging Radiat Oncol ; 7: 39-44, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31872085

RESUMO

BACKGROUND AND PURPOSE: Remote beam output audits, which independently measure an institution's machine calibration, are a common component of independent radiotherapy peer review. This work reviews the results and trends of these audit results across several organisations and geographical regions. MATERIALS AND METHODS: Beam output audit results from the Australian Clinical Dosimetry Services, International Atomic Energy Agency, Imaging and Radiation Oncology Core, and Radiation Dosimetry Services were evaluated from 2010 to the present. The rate of audit results outside a +/-5% tolerance was evaluated for photon and electron beams as a function of the year of irradiation and nominal beam energy. Additionally, examples of confirmed calibration errors were examined to provide guidance to clinical physicists and auditing bodies. RESULTS: Of the 210,167 audit results, 1323 (0.63%) were outside of tolerance. There was a clear trend of improved audit performance for more recent dates, and while all photon energies generally showed uniform rates of results out of tolerance, low (6 MeV) and high (≥18 MeV) energy electron beams showed significantly elevated rates. Twenty nine confirmed calibration errors were explored and attributed to a range of issues, such as equipment failures, errors in setup, and errors in performing the clinical reference calibration. Forty-two percent of these confirmed errors were detected during ongoing periodic monitoring, and not at the time of the first audit of the machine. CONCLUSIONS: Remote beam output audits have identified, and continue to identify, numerous and often substantial beam calibration errors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA