RESUMO
BACKGROUND: The circum-basmati group of cultivated Asian rice (Oryza sativa) contains many iconic varieties and is widespread in the Indian subcontinent. Despite its economic and cultural importance, a high-quality reference genome is currently lacking, and the group's evolutionary history is not fully resolved. To address these gaps, we use long-read nanopore sequencing and assemble the genomes of two circum-basmati rice varieties. RESULTS: We generate two high-quality, chromosome-level reference genomes that represent the 12 chromosomes of Oryza. The assemblies show a contig N50 of 6.32 Mb and 10.53 Mb for Basmati 334 and Dom Sufid, respectively. Using our highly contiguous assemblies, we characterize structural variations segregating across circum-basmati genomes. We discover repeat expansions not observed in japonica-the rice group most closely related to circum-basmati-as well as the presence and absence variants of over 20 Mb, one of which is a circum-basmati-specific deletion of a gene regulating awn length. We further detect strong evidence of admixture between the circum-basmati and circum-aus groups. This gene flow has its greatest effect on chromosome 10, causing both structural variation and single-nucleotide polymorphism to deviate from genome-wide history. Lastly, population genomic analysis of 78 circum-basmati varieties shows three major geographically structured genetic groups: Bhutan/Nepal, India/Bangladesh/Myanmar, and Iran/Pakistan. CONCLUSION: The availability of high-quality reference genomes allows functional and evolutionary genomic analyses providing genome-wide evidence for gene flow between circum-aus and circum-basmati, describes the nature of circum-basmati structural variation, and reveals the presence/absence variation in this important and iconic rice variety group.
Assuntos
Sequenciamento por Nanoporos/métodos , Oryza/genética , Sequenciamento Completo do Genoma/métodos , Cromossomos de Plantas/genética , Mapeamento de Sequências Contíguas/métodos , Evolução Molecular , Genoma de Planta , Oryza/classificação , FilogeniaRESUMO
Domesticated plants have long served as excellent models for studying evolution. Many genes and mutations underlying important domestication traits have been identified, and most causal mutations appear to be SNPs. Copy number variation (CNV) is an important source of genetic variation that has been largely neglected in studies of domestication. Ongoing work demonstrates the importance of CNVs as a source of genetic variation during domestication, and during the diversification of domesticated taxa. Here, we review how CNVs contribute to evolutionary processes underlying domestication, and review examples of domestication traits caused by CNVs. We draw from examples in plant species, but also highlight cases in animal systems that could illuminate the roles of CNVs in the domestication process.