Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139618

RESUMO

In this paper, we propose a new cooperative method that improves the accuracy of Turn Movement Count (TMC) under challenging conditions by introducing contextual observations from the surrounding areas. The proposed method focuses on the correct identification of the movements in conditions where current methods have difficulties. Existing vision-based TMC systems are limited under heavy traffic conditions. The main problems for most existing methods are occlusions between vehicles that prevent the correct detection and tracking of the vehicles through the entire intersection and the assessment of the vehicle's entry and exit points, incorrectly assigning the movement. The proposed method intends to overcome this incapability by sharing information with other observation systems located at neighboring intersections. Shared information is used in a cooperative scheme to infer the missing data, thereby improving the assessment that would otherwise not be counted or miscounted. Experimental evaluation of the system shows a clear improvement over related reference methods.

2.
Sensors (Basel) ; 22(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35746199

RESUMO

Dual cameras with visible-thermal multispectral pairs provide both visual and thermal appearance, thereby enabling detecting pedestrians around the clock in various conditions and applications, including autonomous driving and intelligent transportation systems. However, due to the greatly varying real-world scenarios, the performance of a detector trained on a source dataset might change dramatically when evaluated on another dataset. A large amount of training data is often necessary to guarantee the detection performance in a new scenario. Typically, human annotators need to conduct the data labeling work, which is time-consuming, labor-intensive and unscalable. To overcome the problem, we propose a novel unsupervised transfer learning framework for multispectral pedestrian detection, which adapts a multispectral pedestrian detector to the target domain based on pseudo training labels. In particular, auxiliary detectors are utilized and different label fusion strategies are introduced according to the estimated environmental illumination level. Intermediate domain images are generated by translating the source images to mimic the target ones, acting as a better starting point for the parameter update of the pedestrian detector. The experimental results on the KAIST and FLIR ADAS datasets demonstrate that the proposed method achieves new state-of-the-art performance without any manual training annotations on the target data.


Assuntos
Condução de Veículo , Pedestres , Algoritmos , Humanos , Iluminação , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA