Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Environ Sci Technol ; 58(22): 9646-9657, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758106

RESUMO

Soil organic matter (SOM) crucially influences the global carbon cycle, yet its molecular composition and determinants are understudied, especially for tropical volcanic regions. We investigated how SOM compounds change in response to climate, vegetation, soil horizon, and soil properties and the relationship between SOM composition and microbial decomposability in Tanzanian and Indonesian volcanic regions. We collected topsoil (0-15 cm) and subsoil (20-40 cm) horizons (n = 22; pH: 4.6-7.6; SOC: 10-152 g kg-1) with undisturbed vegetation and wide mean annual temperature and moisture ranges (14-26 °C; 800-3300 mm) across four elevational transects (340-2210 m asl.). Evolved gas analysis-mass spectrometry (EGA-MS) documented a simultaneous release of SOM compounds and clay mineral dehydroxylation. Subsequently applying double-shot pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) at 200 and 550 °C, we detailed the molecular composition of topsoil and subsoil SOM. A minor portion (2.7 ± 1.9%) of compounds desorbed at 200 °C, limiting its efficacy for investigating overall SOM characteristics. Pyrolyzed SOM closely aligns with the intermediate decomposable SOM pool, with most pyrolysates (550 °C) originating from this pool. Pyrolysates composition suggests tropical SOM is mainly microbial-derived and subsoil contains more degraded compounds. Higher litter inputs and attenuated SOM decomposition due to cooler temperatures and lower soil pH (<5.5) produce less-degraded SOM at higher elevations. Redundancy analyses revealed the crucial role of active Al/Fe (oxalate-extractable Al/Fe), abundant in low-temperature/high-moisture conditions, in stabilizing these less-degraded components. Our findings provide new insights into SOM molecular composition and its determinants, critical for understanding the carbon cycle in tropical ecosystems.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Solo , Solo/química , Clima Tropical
2.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806399

RESUMO

Bisdemethoxycurcumin (BDMC), a principal and active component of edible turmeric, was previously found to have beneficial effects on metabolic diseases. Chronic kidney disease (CKD) may benefit from its potential therapeutic use. Using a high-fat diet (HFD)-fed mouse model, we examined the effects of BDMC on renal injury and tried to determine how its associated mechanism works. A number of metabolic disorders are significantly improved by BDMC, including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia and inflammation. Further research on renal histopathology and function showed that BDMC could repair renal pathological changes and enhance renal function. Moreover, decreased serum malondialdehyde (MDA), elevated superoxide dismutase (SOD) activity, and the inhibition of renal reactive oxygen species (ROS) overproduction revealed the alleviation of oxidative stress after BDMC administration. In addition, renal Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway was activated in BDMC-treated mice. In conclusion, these findings demonstrated BDMC as a potential therapy for HFD-induced CKD via the activation of the Keap1/Nrf2 pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Insuficiência Renal Crônica , Animais , Camundongos , Diarileptanoides , Dieta Hiperlipídica/efeitos adversos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais
3.
Nucleic Acids Res ; 47(4): 2113-2129, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30544248

RESUMO

ParABS, an important DNA partitioning process in chromosome segregation, includes ParA (an ATPase), ParB (a parS binding protein) and parS (a centromere-like DNA). The homologous proteins of ParA and ParB in Helicobacter pylori are HpSoj and HpSpo0J, respectively. We analyzed the ATPase activity of HpSoj and found that it is enhanced by both DNA and HpSpo0J. Crystal structures of HpSoj and its DNA complexes revealed a typical ATPase fold and that it is dimeric. DNA binding by HpSoj is promoted by ATP. The HpSoj-ATP-DNA complex non-specifically binds DNA through a continuous basic binding patch formed by lysine residues, with a single DNA-binding site. This complex exhibits a DNA-binding adept state with an active ATP-bound conformation, whereas the HpSoj-ADP-DNA complex may represent a transient DNA-bound state. Based on structural comparisons, HpSoj exhibits a similar DNA binding surface to the bacterial ParA superfamily, but the archaeal ParA superfamily exhibits distinct non-specific DNA-binding via two DNA-binding sites. We detected the HpSpo0J-HpSoj-DNA complex by electron microscopy and show that this nucleoid-adaptor complex (NAC) is formed through HpSoj and HpSpo0J interaction and parS DNA binding. NAC formation is promoted by HpSoj participation and specific parS DNA facilitation.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Segregação de Cromossomos/genética , Helicobacter pylori/genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Centrômero/genética , Cromossomos Bacterianos/genética , Cristalografia por Raios X , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Helicobacter pylori/química , Helicobacter pylori/patogenicidade
4.
Heliyon ; 10(12): e32512, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38952382

RESUMO

Objective: Uncoupling protein 2 (UCP2) is an ion/anion transporter in the mitochondrial inner membrane that plays a crucial role in immune response, regulation of oxidative stress, and cellular metabolism. UCP2 polymorphisms are linked to chronic inflammation, obesity, diabetes, heart disease, exercise efficiency, and longevity. Daily step count and number of teeth are modifiable factors that reduce mortality risk, although the role of UCP2 in this mechanism is unknown. This study aimed to assess the possible effects of UCP2 polymorphisms on the association between daily step count and number of teeth with all-cause mortality. Methods: This study was conducted as a cohort project involving adult Japanese outpatients at Sado General Hospital (PROST). The final number of participants was 875 (mean age: 69 y). All-cause mortality during thirteen years (from June 2008 to August 2021) was recorded. The functional UCP2 genotypes rs659366 and rs660339 were identified using the Japonica Array®. Survival analyses were performed using multivariate Cox proportional hazard models. Results: There were 161 deaths (mean observation period: 113 months). Age, sex, daily step count, and the number of teeth were significantly associated with mortality. In females, UCP2 polymorphisms were associated with mortality independent of other factors (rs659366 GA compared to GG + AA; HR = 2.033, p = 0.019, rs660339 C T compared to CC + TT; HR = 1.911, p = 0.029). Multivariate models, with and without UCP2 genotypes, yielded similar results. The interaction terms between UCP2 genotype and daily step count or number of teeth were not significantly associated with mortality. Conclusion: The effects of UCP2 polymorphisms on the association between daily step count or the number of teeth and all-cause mortality were not statistically significant. In females, UCP2 polymorphisms were significantly associated with all-cause mortality. Our findings confirmed the importance of physical activity and oral health and suggested a role of UCP2 in mortality risk independently with those factors.

5.
RSC Adv ; 14(18): 12303-12312, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633496

RESUMO

As dienes contain two C[double bond, length as m-dash]C bonds, theoretically, they are much more chemically reactive with hydroxyl radical (˙OH) than alkenes and alkanes, and the reaction with ˙OH is one of the main atmospheric degradation routes of dienes during the daytime. In our work, rate coefficients of three types of acyclic dienes: conjugated as 3-methyl-1,3-pentadiene (3M13PD), isolated as 1,4-hexadiene (14HD), and cumulated as 1,2-pentadiene (12PD) reaction with ˙OH were measured in the temperature range of 273-318 K and 1 atm using the relative rate method. At 298 ± 3 K, the rate coefficients for those reactions were determined to be k3M13PD+OH = (15.09 ± 0.72) × 10-11, k14HD+OH = (9.13 ± 0.62) × 10-11, k12PD+OH = (3.34 ± 0.40) × 10-11 (as units of cm3 per molecule per s), in the excellent agreement with values of previously reported. The first measured temperature dependence for 3M13PD, 14HD and 12PD reaction with ˙OH can be expressed by the following Arrhenius expressions in units of cm3 per molecule per s: k3M13PD+OH = (8.10 ± 2.23) × 10-11 exp[(173 ± 71)/T]; k14HD+OH = (9.82 ± 5.10) × 10-12 exp[(666 ± 123)/T]; k12PD+OH = (1.13 ± 0.87) × 10-12 exp[(1038 ± 167)/T] (as units of cm3 per molecule per s). The kinetic discussion revealed that the relative position between these two C[double bond, length as m-dash]C could significantly affect the reactivity of acyclic dienes toward ˙OH. A simple structure-activity relationship (SAR) method was proposed to estimate the reaction rate coefficients of acyclic dienes with ˙OH.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36767441

RESUMO

Accurate evaluation of the accessibility of medical facilities is a prerequisite for the reasonable allocation of medical resources in a city. The accessibility of medical facilities depends not only on the distance to the supply and demand points, but also on the time spent in the process, and the supply capacity of the supply points. Taking Xi'an City of Shaanxi Province as an example, this paper comprehensively considers the facility supply capacity and introduces the selection probability function based on the two-step floating catchment area (2SFCA) method. In addition, in order to approximate the residents' acceptance of different types of hospitals for long-distance medical treatment in real situations, different levels of search radius were set for the different levels of hospitals, and ArcGIS was used to measure the accessibility and evaluate the spatial layout of medical facilities in the main urban area of Xi'an. The results show that there is a significant difference in the accessibility of medical facilities in the main urban area of Xi'an, and the accessibility tends to decrease gradually from the central city to the periphery. The inequity in the allocation of medical facilities in the main urban area of Xi'an is more obvious, with about 81.64% of people having access to 54.88% of medical resources. The accessibility evaluation model established by the improved 2SFCA method can obtain more accurate and objective evaluation results. This study can provide a reference basis for urban medical facilities' planning and rational spatial layout.


Assuntos
Instalações de Saúde , Acessibilidade aos Serviços de Saúde , Humanos , China , Cidades , Hospitais
7.
J Pharm Biomed Anal ; 236: 115725, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37716275

RESUMO

Type 2 diabetes mellitus (T2DM) has been the most prevalent disease and has become a serious public health threat worldwide. Gynura bicolor (Willd.) DC. (GB) contains a variety of nutrients and possesses numerous activities, which might benefit those with diabetes. The current study aimed to confirm the improvement of metabolic disorders and explore the potential mechanism of GB in high fat diet-fed (HFD) and streptozotocin (STZ)-induced T2DM mice. The aboveground sample of GB was extracted with alcohol, and identified by highperformance liquid chromatography (HPLC) and liquid chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) analysis. HFD and STZ-induced T2DM mice were administrated with GB extract. Biochemical and histopathologic examinations were conducted, and metabolomics evaluation was performed in serum and urine. GB significantly reduced body weight and liver weight, reversed hyperlipidemia, hyperglycemia, insulin resistance, oxidative stress and inflammation, improved hepatic histopathological changes and lipid deposition and mitigated liver injury in T2DM mice. Serum and urine metabolomics demonstrated a variety of significantly disturbed metabolites in T2DM and these changes were reversed after GB administration, including 13S-hydroxyoctadecadienoic acid, arachidonic acid, L-Valine and so on. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the overlapping enriched pathways in the normal control group and GB group were identified, including linoleic acid metabolism, PPAR signaling pathway, protein digestion and absorption, biosynthesis of amino acids and so on. This study demonstrates that the ethanol extract of GB remarkably attenuates metabolic disorders and maintains the dynamic balance of metabolites in T2DM, providing a scientific basis for GB in the treatment of T2DM and metabolism diseases.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36141737

RESUMO

With the continuous aging of society, the demand among elderly citizens for care facilities is increasing. The accessibility of elderly care facilities is a significant indicator for evaluating whether the layout of urban elderly care facilities is reasonable, and research on the spatial accessibility of related facilities has become an important academic issue in recent years. In this paper, based on the lack of accurate measurement in calculating the spatial accessibility of existing elderly care facilities, we improve the mathematical model based on the two-step floating catchment area method (2SFCA) and introduce the probability function of the elderly population's choice, taking into account the influence of institutional capacity and service quality. In terms of the catchment radius, the calculation accuracy is improved by using the shortest distance along the route combined with the real road network instead of choosing the Euclidean distance. In addition, specific travel thresholds are set for the travel characteristics of the elderly. An evaluation model of the accessibility of urban elderly care facilities is constructed with the help of ArcGIS software to evaluate and analyze the accessibility of the current layout of urban elderly care facilities in Xi'an, China. The results show that the improved 2SFCA model is more effective in evaluating the spatial accessibility of elderly care facilities and has higher accuracy than the previous calculation model, which provides a methodological basis and academic reference for the specific planning of urban elderly care facilities.


Assuntos
Acessibilidade aos Serviços de Saúde , Viagem , Idoso , Área Programática de Saúde , China , Humanos , Funções Verossimilhança
9.
Heliyon ; 8(12): e12126, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561668

RESUMO

Loquat leaf is approved to be beneficial in the treatment of diabetes. Total sesquiterpene glycosides (TSG), a major chemical component cluster, has potential ability to improve insulin-resistant diabetes syndrome. Its therapeutic mechanism using metabolomics in vivo is worth to be investigated. This study aimed to reveal the underlying therapeutic mechanism of TSG on insulin-resistant mice by untargeted metabolomics, and to explore the lipid metabolism differences in vivo. High-fat diet was used to induce insulin-resistant mice model. Biochemical indicators were applied to evaluate the model validity and related treatment effect. Ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry was utilized to accomplish serum and urine untargeted metabolomics. Oral administration of TSG had a therapeutic effect on high-fat diet induced insulin-resistant mice. Four hundred forty-two metabolites in serum and 1732 metabolites in urine were annotated. Principal component analysis screened 324 differential metabolic signatures in serum sample and 1408 in urine sample. The pathway mainly involved purine metabolism and biosynthesis of unsaturated fatty acids. Lipidomic analysis of urine and serum confirmed that most lipid metabolites were fatty acyls, sterol lipids and polyketides.

10.
Cells ; 11(15)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35954241

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with dire consequences and in urgent need of improved therapies. Compelling evidence indicates that damage or dysfunction of AT2s is of central importance in the development of IPF. We recently identified a novel AT2 subpopulation characterized by low SFTPC expression but that is enriched for PD-L1 in mice. These cells represent quiescent, immature AT2 cells during normal homeostasis and expand upon pneumonectomy (PNX) and were consequently named injury-activated alveolar progenitors (IAAPs). FGF10 is shown to play critical roles in lung development, homeostasis, and injury repair demonstrated in genetically engineered mice. In an effort to bridge the gap between the promising properties of endogenous Fgf10 manipulation and therapeutic reality, we here investigated whether the administration of exogenous recombinant FGF10 protein (rFGF10) can provide preventive and/or therapeutic benefit in a mouse model of bleomycin-induced pulmonary fibrosis with a focus on its impact on IAAP dynamics. C57BL/6 mice and SftpcCreERT2/+; tdTomatoflox/+ mice aged 8-10 weeks old were used in this study. To induce the bleomycin (BLM) model, mice were intratracheally (i.t.) instilled with BLM (2 µg/g body weight). BLM injury was induced after a 7-day washout period following tamoxifen induction. A single i.t. injection of rFGF10 (0.05 µg/g body weight) was given on days 0, 7, 14, and 21 after BLM injury. Then, the effects of rFGF10 on BLM-induced fibrosis in lung tissues were assessed by H&E, IHC, Masson's trichrome staining, hydroxyproline and Western blot assays. Immunofluorescence staining and flow cytometry was used to assess the dynamic behavior of AT2 lineage-labeled SftpcPos (IAAPs and mature AT2) during the course of pulmonary fibrosis. We observed that, depending on the timing of administration, rFGF10 exhibited robust preventive or therapeutic efficacy toward BLM-induced fibrosis based on the evaluation of various pathological parameters. Flow cytometric analysis revealed a dynamic expansion of IAAPs for up to 4 weeks following BLM injury while the number of mature AT2s was drastically reduced. Significantly, rFGF10 administration increased both the peak ratio and the duration of IAAPs expansion relative to EpCAMPos cells. Altogether, our results suggest that the administration of rFGF10 exhibits therapeutic potential for IPF most likely by promoting IAAP proliferation and alveolar repair.


Assuntos
Fibrose Pulmonar , Animais , Bleomicina/uso terapêutico , Peso Corporal , Modelos Animais de Doenças , Fator 10 de Crescimento de Fibroblastos/farmacologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo
11.
J Agric Food Chem ; 70(9): 2923-2935, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195395

RESUMO

As the main factor in the pathogenesis of chronic kidney disease (CKD), the excessive apoptosis of renal tubular epithelial cells (RTECs) and its underlying mechanism of action are worth further investigation. Chicoric acid (CA), a major active constituent of the Uyghur folk medicine chicory, was recorded to possess a renal protective effect. The precise effect of CA on renal tubular injury in obesity-related CKD remains unknown. In the current study, CA was proven to ameliorate metabolic disorders including overweight, hyperglycemia, hyperlipidemia, and hyperuricemia in high fat diet (HFD)-fed mice. Furthermore, the reverse effect of CA on renal histological changes and functional damage was confirmed. In vitro, the alleviation of lipid accumulation and cell apoptosis was observed in palmitic acid (PA)-exposed HK2 cells. Treatment with CA reduced mitochondrial damage and oxidative stress in the renal tubule of HFD-fed mice and PA-treated HK2 cells. Finally, CA was observed to activate the Nrf2 pathway; increase PINK and Parkin expression; and regulate LC3, SQSTM1, Mfn2, and FIS1 expression; therefore, it would improve mitochondrial dynamics and mitophagy to alleviate mitochondrial damage in RTECs of obesity-related CKD. These results may provide fresh insights into the promotion of mitophagy in the prevention and alleviation of obesity-related CKD.


Assuntos
Hiperuricemia , Insuficiência Renal Crônica , Animais , Ácidos Cafeicos , Dieta Hiperlipídica/efeitos adversos , Hiperuricemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/genética , Succinatos , Ubiquitina-Proteína Ligases/metabolismo
12.
Sci Total Environ ; 761: 143277, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33203565

RESUMO

Understanding the factors that control the storage of soil organic carbon (SOC) is an urgent priority for mitigating global climate problems. The objective of this study was to determine the factors controlling SOC pools with differing stabilities. Surface soil samples were collected along an elevation gradient from four volcanic regions of Tanzania (two regions) and Indonesia (two regions) under largely-undisturbed vegetation (24 sites in total). A three-pool kinetic model was fitted to accumulative CO2 release curve produced over 343-day incubation to determine the sizes of the labile and intermediate SOC pools (CL and CI, respectively) and their mean residence times (1/KL and 1/KI, respectively), where the size of the stable SOC pool (CS) was measured as non-hydrolyzable carbon. Correlation and path analyses were performed using the results of soil fractionation and model fitting with climatic and geochemical properties. The intermediate pool comprised 50% of total SOC, was responsible for 58% of total accumulative CO2 release, and controlled total SOC stability. The content of nanocrystalline minerals (Alo + 1/2Feo: 5.5-110 g kg-1) was strongly correlated with CI and CS, suggesting that organo-mineral complexes is the essential factor that controls CI and CS rather than soil texture or pH. Temperature (12-26 °C) was weakly correlated with CI, CS, and strongly with CL, which was closely related to microbial biomass carbon. The low temperature at the high elevation sites retards the decomposition of the whole SOC. The significant correlations of excess precipitation with 1/KL and 1/KI represent the effect of moisture on the potential stabilities of the labile and intermediate SOC pools. Climatic factors primarily affect relatively labile SOC pools, whereas geochemical factors influence more stable pools and control total SOC. The findings have important implications for understanding the SOC stabilization mechanisms, which is an essential process of the carbon cycle, in tropical volcanic soils.

13.
Sci Total Environ ; 769: 144842, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736247

RESUMO

Soil organic carbon (SOC) in the subsoil may not be so resistant to decomposition as previously assumed, while the mechanisms controlling C dynamics in subsoils are not yet known. This study aimed to (1) identify the factors that control SOC pools in subsoil and (2) compare the differences in SOC pools and controlling factors between the subsoil and topsoil. Subsoils (20-40 cm) were sampled along elevational gradients from two volcanic regions with less-disturbed vegetation each from Tanzania (11 sites) and Indonesia (12 sites). The sizes and mean residence times of labile, intermediate, and stable SOC pools were estimated by fractionation and model fitting to CO2 release during long-term incubation. The controlling factors of each SOC pool were determined by accompanying partial correlation and path analyses. In subsoil, the intermediate SOC pool predominantly controlled the SOC stability within decades. Climatic, geochemical, and biotic factors controlled different SOC pools. Temperature negatively affected the sizes of all three pools. The nanocrystalline minerals contents predominantly and positively controlled the sizes of intermediate and stable SOC pools, and the mean residence time of intermediate SOC pool. Biotic and climatic factors (i.e., microbial biomass, available N for microbes, and excess precipitation) controlled the labile SOC pool. Compared with topsoil, stabilized organic matters were more in the intermediate rather than in the stable SOC pool, and the temperature had a more significant effect on the stable SOC pool in subsoil than in topsoil. Available N for microbes partially controlled the labile and intermediate SOC pools in subsoil (more limited available N for microbes), but not in topsoil. Thus, subsoil SOC would be more sensitive to climate change than topsoil SOC. This study helped to understand the SOC stabilization mechanism and emphasized the high climate- and mineral-dependence of SOC in subsoil of tropical volcanic regions.

14.
Theranostics ; 10(10): 4422-4436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292505

RESUMO

YAP1 is a key mediator of the Hippo pathway capable of exerting a profound effect on organ size as well as tumorigenesis. Alternative mRNA splicing of human YAP1 results in at least 8 protein isoforms that differ within the 2nd WW motif and the transcriptional activation domain. Methods: To investigate the isoform-specific differences in their mRNA expression, transcriptional activity and tumor-promoting function, we cloned cDNA encoding all of the eight YAP1 protein isoforms. Then, we examined their mRNA expression, subcellular localization, transcriptional regulation properties, interactions with key regulatory partners, and protein stability in response to changes in cell density, as well as their effects on pancreatic cancer cell malignancy both in vitro and in vivo. Results: Multiple YAP1 mRNA isoforms are expressed in commonly used pancreatic cancer lines as well as human pancreatic cancer PDX lines. Based on the analysis of heterologous reporter and endogenous target genes, all YAP1 isoforms are capable of activating transcription, albeit to a different extent. Importantly, we unveiled a marked discrepancy between the mRNA and protein expression levels of the YAP1-1 and YAP1-2 isoforms. We further discovered that the YAP1-2 isoform, which contains two tandem WW motifs, is less stable at the protein level, particularly at high cell densities. Mechanistically, we found that the presence of the 2nd WW motif in YAP1-2 facilitates the de novo formation of the YAP1-2/AMOT/LATS1 complex and contributes to a stronger binding of YAP1-2 to LATS1 and subsequently increased YAP1-2 ubiquitination and degradation by ß-TRCP. Conclusion: Our data reveals a potent effect of YAP1-1 on pancreatic cancer malignancy in vitro and in vivo and provides novel mechanistic insight into isoform-specific and cell density-dependent regulation of YAP1 stability, as well as its impact on cancer malignancy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Domínios WW , Proteínas de Sinalização YAP , Neoplasias Pancreáticas
16.
Mol Cancer Ther ; 7(11): 3632-41, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19001445

RESUMO

Gefitinib (Iressa, ZD1839) is a selective epidermal growth factor receptor tyrosine kinase inhibitor that can block growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) activation. High-level Rad51 expression has been reported in chemoresistant or radioresistant carcinomas. In this study, we examined the role of Rad51 in regulating the response to gefitinib among different human lung cancer cell lines. The H520 line (human squamous cell carcinoma) was less sensitive to gefitinib compared with the H1650 (human adenocarcinoma) or A549 (human bronchioloalveolar carcinoma) lines. In H1650 and A549 cells but not in H520 cells, gefitinib decreased cellular levels of phospho-ERK1/2 and Rad51 protein and message levels. Moreover, gefitinib decreased Rad51 protein levels by enhancing Rad51 protein instability through 26S proteasome-mediated degradation. Inhibition of endogenous Rad51 levels by si-Rad51 RNA transfection significantly enhanced gefitinib-induced cytotoxicity. In contrast, transfection with constitutively active MKK1 vector could restore both Rad51 protein levels and cell survival inhibited by gefitinib. The MKK1/2-ERK1/2 signaling pathway constitutes the upstream signaling for maintaining Rad51 message and protein levels. Rad51 protein can protect lung cancer cells from cytotoxic effects induced by gefitinib. Suppression of Rad51 may be a novel lung cancer therapeutic modality to overcome drug resistance to gefitinib.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Rad51 Recombinase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Gefitinibe , Humanos , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Transfecção
17.
Carcinogenesis ; 29(7): 1448-58, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18544565

RESUMO

Gefitinib (Iressa(R), ZD1839) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling activation. Rad51 is an essential component of the homologous recombination repair pathway. High level of Rad51 expression has been reported in chemo- or radioresistant carcinomas. We hypothesized that gefitinib may enhance the effects of the alkylating agent cisplatin- or the antitumor antibiotic mitomycin C (MMC)-mediated cytotoxicity by decreasing ERK1/2 activation and Rad51 expression. Exposure of human non-small lung cancer cells to gefitinib decreased cisplatin- or MMC-elicited ERK1/2 activation and Rad51 protein induction. Neither cisplatin nor MMC treatment affected Rad51 messenger RNA (mRNA). However, gefitinib cotreatment with cisplatin or MMC significantly decreased Rad51 mRNA levels. In addition, gefitinib decreased cisplatin- or MMC-elicited Rad51 protein levels by increasing Rad51 protein instability. Enhancement of ERK1/2 signaling by constitutively active mitogen-activated protein kinase kinase 1/2 (MKK1/2-CA) increased Rad51 protein levels and protein stability in gefitinib and cisplatin or MMC cotreated cells. Moreover, the synergistic cytotoxic effects induced by gefitinib cotreatment with cisplatin or MMC were remarkably decreased by MKK1-CA-mediated enhancement of ERK1/2 activation. Depletion of endogenous Rad51 expression by si-Rad51 RNA transfection significantly enhanced lung cancer cell death upon treatment with cisplatin or MMC. We conclude that Rad51 protein protects lung cancer cells from synergistic cytotoxic effects induced by gefitinib and chemotherapeutic agents. Suppression of Rad51 expression may be a novel lung cancer therapeutic modality to overcome drug resistance to EGFR inhibitors and chemotherapeutic agents.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Rad51 Recombinase/fisiologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Sinergismo Farmacológico , Gefitinibe , Humanos , Neoplasias Pulmonares/genética , MAP Quinase Quinase 1/biossíntese , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mitomicina/administração & dosagem , Mitomicina/farmacologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/administração & dosagem , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Rad51 Recombinase/biossíntese , Rad51 Recombinase/genética , Transfecção
18.
Nat Prod Commun ; 11(10): 1579-1586, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30549625

RESUMO

Triterpenoids, an important group of secondary metabolites, are widely distributed in nature. Many triterpenoids have been found with potential therapeutic effect against diabetes mellitus. However, the use of triterpenoids for the treatment of diabetes has not been systematically discussed previously. This review summarized the anti-diabetic activity of natural triterpenoids reported since the late 1980s with the emphasis on the molecular mechanisms.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Triterpenos/uso terapêutico , Animais , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/farmacologia
19.
Oncotarget ; 7(17): 23346-60, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-26992221

RESUMO

Hepatitis B virus (HBV) is a driver of hepatocellular carcinoma, and two viral products, X and large surface antigen (LHBS), are viral oncoproteins. During chronic viral infection, immune-escape mutants on the preS2 region of LHBS (preS2-LHBS) are gain-of-function mutations that are linked to preneoplastic ground glass hepatocytes (GGHs) and early disease onset of hepatocellular carcinoma. Here, we show that preS2-LHBS provoked calcium release from the endoplasmic reticulum (ER) and triggered stored-operated calcium entry (SOCE). The activation of SOCE increased ER and plasma membrane (PM) connections, which was linked by ER- resident stromal interaction molecule-1 (STIM1) protein and PM-resident calcium release- activated calcium modulator 1 (Orai1). Persistent activation of SOCE induced centrosome overduplication, aberrant multipolar division, chromosome aneuploidy, anchorage-independent growth, and xenograft tumorigenesis in hepatocytes expressing preS2- LHBS. Chemical inhibitions of SOCE machinery and silencing of STIM1 significantly reduced centrosome numbers, multipolar division, and xenograft tumorigenesis induced by preS2-LHBS. These results provide the first mechanistic link between calcium homeostasis and chromosome instability in hepatocytes carrying preS2-LHBS. Therefore, persistent activation of SOCE represents a novel pathological mechanism in HBV-mediated hepatocarcinogenesis.


Assuntos
Canais de Cálcio/metabolismo , Carcinoma Hepatocelular/genética , Instabilidade Cromossômica , Antígenos de Superfície da Hepatite B/metabolismo , Hepatite B/complicações , Neoplasias Hepáticas/genética , Mutação , Precursores de Proteínas/metabolismo , Animais , Cálcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Hepatite B/genética , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Precursores de Proteínas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncotarget ; 6(4): 2023-33, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25638162

RESUMO

Shugoshin-like protein 1 (Sgo1) is an essential protein in mitosis; it protects sister chromatid cohesion and thereby ensures the fidelity of chromosome separation. We found that the expression of Sgo1 mRNA was relatively low in normal tissues, but was upregulated in 82% of hepatocellular carcinoma (HCC), and correlated with elevated alpha-fetoprotein and early disease onset of HCC. The depletion of Sgo1 reduced cell viability of hepatoma cell lines including HuH7, HepG2, Hep3B, and HepaRG. Using time-lapse microscopy, we showed that hepatoma cells were delayed and ultimately die in mitosis in the absence of Sgo1. In contrast, cell viability and mitotic progression of immortalized cells were not significantly affected. Notably, mitotic cell death induced upon Sgo1 depletion was suppressed upon inhibitions of cyclin-dependent kinase-1 and Aurora kinase-B, or the depletion of mitotic arrest deficient-2. Thus, mitotic cell death induced upon Sgo1 depletion in hepatoma cells is mediated by persistent activation of the spindle assembly checkpoint. Together, these results highlight the essential role of Sgo1 in the maintenance of a proper mitotic progression in hepatoma cells and suggest that Sgo1 is a promising oncotarget for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Processamento Alternativo , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Perfilação da Expressão Gênica , Células HCT116 , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mitose/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA