Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982890

RESUMO

Today we see an increasing demand for new fluorescent materials exhibiting various sensory abilities due to their broad applicability ranging from the construction of flexible devices to bioimaging. In this paper, we report on the new fluorescent pigments AntTCNE, PyrTCNE, and PerTCNE which consist of 3-5 fused aromatic rings substituted with tricyanoethylene fragments forming D-π-A diad. Our studies reveal that all three compounds exhibit pronounced rigidochromic properties, i.e., strong sensitivity of their fluorescence to the viscosity of the local environment. We also demonstrate that our new pigments belong to a very rare type of organic fluorophores which do not obey the well-known empirical Kasha'rule stating that photoluminescence transition always occurs from the lowest excited state of an emitting molecule. This rare spectral feature of our pigments is accompanied by an even rarer capability of spectrally and temporally well-resolved anti-Kasha dual emission (DE) from both higher and lowest electronic states in non-polar solvents. We show that among three new pigments, PerTCNE has significant potential as the medium-bandgap non-fullerene electron acceptor. Such materials are now highly demanded for indoor low-power electronics and portable devices for the Internet-of-Things. Additionally, we demonstrate that PyrTCNE has been successfully used as a structural unit in template assembling of the new cyanoarylporphyrazine framework with 4 D-π-A dyads framing this macrocycle (Pyr4CN4Pz). Similarly to its structural unit, Pyr4CN4Pz is also the anti-Kasha fluorophore, exhibiting intensive DE in viscous non-polar medium and polymer films, which strongly depends on the polarity of the local environment. Moreover, our studies showed high photodynamic activity of this new tetrapyrrole macrocycle which is combined with its unique sensory capacities (strong sensitivity of its fluorescent properties to the local environmental stimuli such as viscosity and polarity. Thus, Pyr4CN4Pz can be considered the first unique photosensitizer that potentially enables the real-time combination of photodynamic therapy and double-sensory approaches which is very important for modern biomedicine.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Solventes/química , Fluorescência
2.
Pharmaceutics ; 14(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36559148

RESUMO

Photodynamic therapy (PDT) is a rapidly developing modality of primary and adjuvant anticancer treatment. The main trends today are the search for new effective photodynamic agents and the creation of targeted delivery systems with the function of controlling the release of the agent in the tumor. Recently, the new group of cyanoarylporphyrazine dyes was reported, which combine the properties of photosensitizers and sensors of the local microenvironment. Such unique characteristics allow the release of the photosensitizer from the transport carrier to be assessed in real time in vivo. The aim of the present work was to compare the photophysical and photobiological properties of tetra(2-naphthyl)tetracyanoporphyrazine and its newly synthesized Fe(II) complex. We have shown that the chelation of the Fe(II) cation with the porphyrazine macrocycle leads to a decrease in molar extinction and an increase in the quantum yield of fluorescence and photostability. We demonstrate that the iron cation significantly affects the rate of dye accumulation in cells, the dark toxicity and photodynamic activity, and the direction of the changes depends on the particular cell line. However, in all the cases, the photodynamic index of a metal complex was higher than that of a metal-free base. In general, both of the compounds were found to be very promising for PDT, including for the use with transport delivery systems, and can be recommended for further in vivo studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA