Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 33(4): 2945-2953, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36474057

RESUMO

OBJECTIVE: To evaluate the impact of the digital mammography imaging system on overall background enhancement on recombined contrast-enhanced spectral mammography (CESM) images, the overall background enhancement of two different mammography systems was compared. METHODS: In a retrospective single-center study, CESM images of n = 129 female patients who underwent CESM between 2016 and 2019 were analyzed independently by two radiologists. Two mammography machines of different manufacturers were compared qualitatively using a Likert-scale from 1 (minimal) to 4 (marked overall background enhancement) and quantitatively by placing a region of interest and measuring the intensity enhancement. Lesion conspicuity was analyzed using a Likert-scale from 1 (lesion not reliably distinguishable) to 5 (excellent lesion conspicuity). A multivariate regression was performed to test for potential biases on the quantitative results. RESULTS: Significant differences in qualitative background enhancement measurements between machines A and B were observed for both readers (p = 0.003 and p < 0.001). The quantitative evaluation showed significant differences in background enhancement with an average difference of 75.69 (99%-CI [74.37, 77.02]; p < 0.001). Lesion conspicuity was better for machine A for the first and second reader respectively (p = 0.009 and p < 0.001). The factor machine was the only influencing factor (p < 0.001). The factors contrast agent, breast density, age, and menstrual cycle could be excluded as potential biases. CONCLUSION: Mammography machines seem to significantly influence overall background enhancement qualitatively and quantitatively; thus, an impact on diagnostic accuracy appears possible. KEY POINTS: • Overall background enhancement on CESM differs between different vendors qualitatively and quantitatively. • Our retrospective single-center study showed consistent results of the qualitative and quantitative data analysis of overall background enhancement. • Lesion conspicuity is higher in cases of lower background enhancement on CESM.


Assuntos
Neoplasias da Mama , Mamografia , Humanos , Feminino , Estudos Retrospectivos , Mamografia/métodos , Meios de Contraste/farmacologia , Densidade da Mama , Projetos de Pesquisa , Neoplasias da Mama/diagnóstico por imagem , Sensibilidade e Especificidade
2.
Diagn Interv Imaging ; 104(2): 53-59, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35843839

RESUMO

PURPOSE: The purpose of this study was to evaluate the impact of a deep learning-based super-resolution technique on T1-weighted gradient-echo acquisitions (volumetric interpolated breath-hold examination; VIBE) on the assessment of pancreatic MRI at 1.5 T compared to standard VIBE imaging (VIBESTD). MATERIALS AND METHODS: This retrospective single-center study was conducted between April 2021 and October 2021. Fifty patients with a total of 50 detectable pancreatic lesion entities were included in this study. There were 27 men and 23 women, with a mean age of 69 ± 13 (standard deviation [SD]) years (age range: 33-89 years). VIBESTD (precontrast, dynamic, postcontrast) was retrospectively processed with a deep learning-based super-resolution algorithm including a more aggressive partial Fourier setting leading to a simulated acquisition time reduction (VIBESR). Image analysis was performed by two radiologists regarding lesion detectability, noise levels, sharpness and contrast of pancreatic edges, as well as regarding diagnostic confidence using a 5-point Likert-scale with 5 being the best. RESULTS: VIBESR was rated better than VIBESTD by both readers regarding lesion detectability (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5], for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5]) for reader 2; both P <0.001), noise levels (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001), sharpness and contrast of pancreatic edges (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001), as well as regarding diagnostic confidence (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001). There were no significant differences between lesion sizes as measured by the two readers on VIBESR and VIBESTD images (P > 0.05). The mean acquisition time for VIBESTD (15 ± 1 [SD] s; range: 11-16 s) was longer than that for VIBESR (13 ± 1 [SD] s; range: 11-14 s) (P < 0.001). CONCLUSION: Our results indicate that the newly developed deep learning-based super-resolution algorithm adapted to partial Fourier acquisitions has a positive influence not only on shortening the examination time but also on improvement of image quality in pancreatic MRI.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artefatos , Meios de Contraste , Aprendizado Profundo , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Pâncreas/diagnóstico por imagem , Estudos Retrospectivos
3.
J Clin Med ; 12(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762918

RESUMO

PURPOSE: The purpose of our study was to evaluate the association between the [18F]FDG standard uptake value (SUV) and the apparent diffusion coefficient (ADC) in neuroblastoma (NB) by voxel-wise analysis. METHODS: From our prospective observational PET/MRI study, a subcohort of patients diagnosed with NB with both baseline imaging and post-chemotherapy imaging was further investigated. After registration and tumor segmentation, metabolic and functional tumor volumes were calculated from the ADC and SUV values using dedicated software allowing for voxel-wise analysis. Under the mean of thresholds, each voxel was assigned to one of three virtual tissue groups: highly vital (v) (low ADC and high SUV), possibly low vital (lv) (high ADC and low SUV), and equivocal (e) with high ADC and high SUV or low ADC and low SUV. Moreover, three clusters were generated from the total tumor volumes using the method of multiple Gaussian distributions. The Pearson's correlation coefficient between the ADC and the SUV was calculated for each group. RESULTS: Out of 43 PET/MRIs in 21 patients with NB, 16 MRIs in 8 patients met the inclusion criteria (PET/MRIs before and after chemotherapy). The proportion of tumor volumes were 26%, 36%, and 38% (v, lv, e) at baseline, 0.03%, 66%, and 34% after treatment in patients with response, and 42%, 25%, and 33% with progressive disease, respectively. In all clusters, the ADC and the SUV correlated negatively. In the cluster that corresponded to highly vital tissue, the ADC and the SUV showed a moderate negative correlation before treatment (R = -0.18; p < 0.0001) and the strongest negative correlation after treatment (R = -0.45; p < 0.0001). Interestingly, only patients with progression (n = 2) under therapy had a relevant part in this cluster post-treatment. CONCLUSION: Our results indicate that voxel-wise analysis of the ADC and the SUV is feasible and can quantify the different quality of tissue in neuroblastic tumors. Monitoring ADCs as well as SUV levels can quantify tumor dynamics during therapy.

4.
Tomography ; 8(4): 1678-1689, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35894005

RESUMO

(1) This study evaluates the impact of an AI denoising algorithm on image quality, diagnostic accuracy, and radiological workflows in pediatric chest ultra-low-dose CT (ULDCT). (2) Methods: 100 consecutive pediatric thorax ULDCT were included and reconstructed using weighted filtered back projection (wFBP), iterative reconstruction (ADMIRE 2), and AI denoising (PixelShine). Place-consistent noise measurements were used to compare objective image quality. Eight blinded readers independently rated the subjective image quality on a Likert scale (1 = worst to 5 = best). Each reader wrote a semiquantitative report to evaluate disease severity using a severity score with six common pathologies. The time to diagnosis was measured for each reader to compare the possible workflow benefits. Properly corrected mixed-effects analysis with post-hoc subgroup tests were used. Spearman's correlation coefficient measured inter-reader agreement for the subjective image quality analysis and the severity score sheets. (3) Results: The highest noise was measured for wFBP, followed by ADMIRE 2, and PixelShine (76.9 ± 9.62 vs. 43.4 ± 4.45 vs. 34.8 ± 3.27 HU; each p < 0.001). The highest subjective image quality was measured for PixelShine, followed by ADMIRE 2, and wFBP (4 (4−5) vs. 3 (4−5) vs. 3 (2−4), each p < 0.001) with good inter-rater agreement (r ≥ 0.790; p ≤ 0.001). In diagnostic accuracy analysis, there was a good inter-rater agreement between the severity scores (r ≥ 0.764; p < 0.001) without significant differences between severity score items per reconstruction mode (F (5.71; 566) = 0.792; p = 0.570). The shortest time to diagnosis was measured for the PixelShine datasets, followed by ADMIRE 2, and wFBP (2.28 ± 1.56 vs. 2.45 ± 1.90 vs. 2.66 ± 2.31 min; F (1.000; 99.00) = 268.1; p < 0.001). (4) Conclusions: AI denoising significantly improves image quality in pediatric thorax ULDCT without compromising the diagnostic confidence and reduces the time to diagnosis substantially.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X , Inteligência Artificial , Criança , Humanos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tórax , Tomografia Computadorizada por Raios X/métodos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA