Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G171-G193, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908847

RESUMO

The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.


Assuntos
Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/fisiologia , Homeostase/fisiologia , Microbiota/fisiologia , Animais , Gastroenteropatias/microbiologia , Trato Gastrointestinal/microbiologia , Humanos
2.
Br J Nutr ; 110 Suppl 2: S1-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23902657

RESUMO

Optimal functioning of the immune system is crucial to human health, and nutrition is one of the major exogenous factors modulating different aspects of immune function. Currently, no single marker is available to predict the effect of a dietary intervention on different aspects of immune function. To provide further guidance on the assessment and interpretation of the modulation of immune functions due to nutrition in the general population, International Life Sciences Institute Europe commissioned a group of experts from academia, government and the food industry to prepare a guidance document. A draft of this paper was refined at a workshop involving additional experts. First, the expert group defined criteria to evaluate the usefulness of immune function markers. Over seventy-five markers were scored within the context of three distinct immune system functions: defence against pathogens; avoidance or mitigation of allergy; control of low-grade (metabolic) inflammation. The most useful markers were subsequently classified depending on whether they by themselves signify clinical relevance and/or involvement of immune function. Next, five theoretical scenarios were drafted describing potential changes in the values of markers compared with a relevant reference range. Finally, all elements were combined, providing a framework to aid the design and interpretation of studies assessing the effects of nutrition on immune function. This stepwise approach offers a clear rationale for selecting markers for future trials and provides a framework for the interpretation of outcomes. A similar stepwise approach may also be useful to rationalise the selection and interpretation of markers for other physiological processes critical to the maintenance of health and well-being.


Assuntos
Biomarcadores , Hipersensibilidade , Sistema Imunitário/fisiologia , Infecções , Inflamação , Fenômenos Fisiológicos da Nutrição , Avaliação de Resultados em Cuidados de Saúde/métodos , Guias como Assunto , Nível de Saúde , Humanos , Hipersensibilidade/dietoterapia , Hipersensibilidade/imunologia , Infecções/dietoterapia , Infecções/imunologia , Inflamação/dietoterapia , Inflamação/imunologia , Projetos de Pesquisa
3.
Eur J Nutr ; 52(7): 1685-99, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23955424

RESUMO

INTRODUCTION: Markers are important tools to assess the nutrition status and effects of nutrition interventions. There is currently insufficient consensus in nutrition sciences on how to evaluate markers, despite the need for properly evaluating them. OBJECTIVES: To identify the criteria for the evaluation of markers related to nutrition, health and disease and to propose generic criteria for evaluation. METHOD: The report on "Evaluation of Biomarker and Surrogate Endpoints in Chronic Disease" from the Institute of Medicine was the starting point for the literature search. Additionally, specific search strategies were developed for Pubmed. RESULTS: In nutrition, no set of criteria or systematic approach to evaluate markers is currently available. There is a reliance on the medical area where statistical methods have been developed to quantify the evaluation of markers. Even here, a systematic approach is lacking-markers are still evaluated on a case-by-case basis. The review of publications from the literature search resulted in a database with definitions, criteria for validity and the rationale behind the criteria. It was recognized that, in nutrition, a number of methodological aspects differ from medical research. CONCLUSIONS: The following criteria were identified as essential elements in the evaluation of markers: (1) the marker has a causal biological link with the endpoint, (2) there is a significant association between marker and endpoint in the target population, (3) marker changes consistently with the endpoint, e.g., in response to an intervention, and (4) change in the marker explains a substantial proportion of the change in the endpoint in response to the intervention.


Assuntos
Biomarcadores/metabolismo , Estado Nutricional , Doença Crônica , Humanos , Reprodutibilidade dos Testes
4.
Am J Clin Nutr ; 115(2): 432-443, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34617562

RESUMO

BACKGROUND: Individual diet components and specific dietary regimens have been shown to impact the gut microbiome. OBJECTIVES: Here, we explored the contribution of long-term diet by searching for dietary patterns that would best associate with the gut microbiome in a population-based cohort. METHODS: Using a priori and a posteriori approaches, we constructed dietary patterns from an FFQ completed by 1800 adults in the American Gut Project. Dietary patterns were defined as groups of participants or combinations of food variables (factors) driven by criteria ranging from individual nutrients to overall diet. We associated these patterns with 16S ribosomal RNA-based gut microbiome data for a subset of 744 participants. RESULTS: Compared to individual features (e.g., fiber and protein), or to factors representing a reduced number of dietary features, 5 a posteriori dietary patterns based on food groups were best associated with gut microbiome beta diversity (P ≤ 0.0002). Two patterns followed Prudent-like diets-Plant-Based and Flexitarian-and exhibited the highest Healthy Eating Index 2010 (HEI-2010) scores. Two other patterns presented Western-like diets with a gradient in HEI-2010 scores. A fifth pattern consisted mostly of participants following an Exclusion diet (e.g., low carbohydrate). Notably, gut microbiome alpha diversity was significantly lower in the most Western pattern compared to the Flexitarian pattern (P ≤ 0.009), and the Exclusion diet pattern was associated with low relative abundance of Bifidobacterium (P ≤ 1.2 × 10-7), which was better explained by diet than health status. CONCLUSIONS: We demonstrated that global-diet a posteriori patterns were more associated with gut microbiome variations than individual dietary features among adults in the United States. These results confirm that evaluating diet as a whole is important when studying the gut microbiome. It will also facilitate the design of more personalized dietary strategies in general populations.


Assuntos
Dieta Saudável/estatística & dados numéricos , Dieta/métodos , Microbioma Gastrointestinal/genética , Fenômenos Fisiológicos da Nutrição , Adulto , Inquéritos sobre Dietas , Fezes/microbiologia , Feminino , Humanos , Masculino , RNA Ribossômico 16S/análise , Estados Unidos
5.
Br J Nutr ; 104 Suppl 2: S1-63, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20920376

RESUMO

The different compartments of the gastrointestinal tract are inhabited by populations of micro-organisms. By far the most important predominant populations are in the colon where a true symbiosis with the host exists that is a key for well-being and health. For such a microbiota, 'normobiosis' characterises a composition of the gut 'ecosystem' in which micro-organisms with potential health benefits predominate in number over potentially harmful ones, in contrast to 'dysbiosis', in which one or a few potentially harmful micro-organisms are dominant, thus creating a disease-prone situation. The present document has been written by a group of both academic and industry experts (in the ILSI Europe Prebiotic Expert Group and Prebiotic Task Force, respectively). It does not aim to propose a new definition of a prebiotic nor to identify which food products are classified as prebiotic but rather to validate and expand the original idea of the prebiotic concept (that can be translated in 'prebiotic effects'), defined as: 'The selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host.' Thanks to the methodological and fundamental research of microbiologists, immense progress has very recently been made in our understanding of the gut microbiota. A large number of human intervention studies have been performed that have demonstrated that dietary consumption of certain food products can result in statistically significant changes in the composition of the gut microbiota in line with the prebiotic concept. Thus the prebiotic effect is now a well-established scientific fact. The more data are accumulating, the more it will be recognised that such changes in the microbiota's composition, especially increase in bifidobacteria, can be regarded as a marker of intestinal health. The review is divided in chapters that cover the major areas of nutrition research where a prebiotic effect has tentatively been investigated for potential health benefits. The prebiotic effect has been shown to associate with modulation of biomarkers and activity(ies) of the immune system. Confirming the studies in adults, it has been demonstrated that, in infant nutrition, the prebiotic effect includes a significant change of gut microbiota composition, especially an increase of faecal concentrations of bifidobacteria. This concomitantly improves stool quality (pH, SCFA, frequency and consistency), reduces the risk of gastroenteritis and infections, improves general well-being and reduces the incidence of allergic symptoms such as atopic eczema. Changes in the gut microbiota composition are classically considered as one of the many factors involved in the pathogenesis of either inflammatory bowel disease or irritable bowel syndrome. The use of particular food products with a prebiotic effect has thus been tested in clinical trials with the objective to improve the clinical activity and well-being of patients with such disorders. Promising beneficial effects have been demonstrated in some preliminary studies, including changes in gut microbiota composition (especially increase in bifidobacteria concentration). Often associated with toxic load and/or miscellaneous risk factors, colon cancer is another pathology for which a possible role of gut microbiota composition has been hypothesised. Numerous experimental studies have reported reduction in incidence of tumours and cancers after feeding specific food products with a prebiotic effect. Some of these studies (including one human trial) have also reported that, in such conditions, gut microbiota composition was modified (especially due to increased concentration of bifidobacteria). Dietary intake of particular food products with a prebiotic effect has been shown, especially in adolescents, but also tentatively in postmenopausal women, to increase Ca absorption as well as bone Ca accretion and bone mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.


Assuntos
Trato Gastrointestinal/microbiologia , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Valor Nutritivo , Prebióticos , Animais , Fermentação , Gastroenteropatias/prevenção & controle , Humanos , Sistema Imunitário/fisiologia , Absorção Intestinal , Minerais/metabolismo , Neoplasias/prevenção & controle , Obesidade/prevenção & controle
6.
Food Nutr Res ; 572013.
Artigo em Inglês | MEDLINE | ID: mdl-23399638

RESUMO

To stimulate discussion around the topic of 'carbohydrates' and health, the Brazilian branch of the International Life Sciences Institute held the 11th International Functional Foods Workshop (1-2 December 2011) in which consolidated knowledge and recent scientific advances specific to the relationship between carbohydrates and health were presented. As part of this meeting, several key points related to dietary fiber, glycemic response, fructose, and impacts on satiety, cognition, mood, and gut microbiota were realized: 1) there is a need for global harmonization of a science-based fiber definition; 2) low-glycemic index foods can be used to modulate the postprandial glycemic response and may affect diabetes and cardiovascular outcomes; 3) carbohydrate type may influence satiety and satiation; glycemic load and glycemic index show links to memory, mood, and concentration; 4) validated biomarkers are needed to demonstrate the known prebiotic effect of carbohydrates; 5) negative effects of fructose are not evident when human data are systematically reviewed; 6) new research indicates that diet strongly influences the microbiome; and 7) there is mounting evidence that the intestinal microbiota has the ability to impact the gut-brain axis. Overall, there is much promise for development of functional foods that impact the microbiome and other factors relevant to health, including glycemic response (glycemic index/glycemic load), satiety, mood, cognition, and weight management.

7.
Food Nutr Res ; 542010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21052531

RESUMO

A definition for dietary fiber was adopted in June 2009 by the Codex Alimentarius Commission based on the recommendation for endorsement of the Codex Committee on Nutrition and Foods for Special Dietary Uses (CCNFSDU) in November 2008. The definition listed three categories of carbohydrate polymers that are not hydrolyzed by the endogenous enzymes in the small intestine of humans. However, the definition left the inclusion of carbohydrates with degrees of polymerization (DP) in the range of 3 and 9 to the discretion of national authorities and left the 'physiological effect(s) of benefit to health' as undefined. The ILSI Europe and ILSI North America's committees on dietary carbohydrates organized a forum at the Ninth Vahouny Fiber Symposium in 2010 to discuss these implementation issues with the objective of building scientific consensus on how to resolve them. The results of this session are encouraging and indicated that the scientific community agrees on maintaining a worldwide consensus regarding the inclusion of non-digestible carbohydrates with ≥DP3 as dietary fiber and on a core, non-exhaustive list of beneficial physiological effects that dietary fibers have. These results are consistent with previous worldwide agreements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA