Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(37): e2201779119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36070342

RESUMO

Chaperone proteins are essential in all living cells to ensure protein homeostasis. Hsp90 is a major adenosine triphosphate (ATP)-dependent chaperone highly conserved from bacteria to eukaryotes. Recent studies have shown that bacterial Hsp90 is essential in some bacteria in stress conditions and that it participates in the virulence of pathogenic bacteria. In vitro, bacterial Hsp90 directly interacts and collaborates with the Hsp70 chaperone DnaK to reactivate model substrate proteins; however, it is still unknown whether this collaboration is relevant in vivo with physiological substrates. Here, we used site-directed mutagenesis on Hsp90 to impair DnaK binding, thereby uncoupling the chaperone activities. We tested the mutants in vivo in two bacterial models in which Hsp90 has known physiological functions. We found that the Hsp90 point mutants were defective to support (1) growth under heat stress and activation of an essential Hsp90 client in the aquatic bacterium Shewanella oneidensis and (2) biosynthesis of the colibactin toxin involved in the virulence of pathogenic Escherichia coli. Our study therefore demonstrates the essentiality of the direct collaboration between Hsp90 and DnaK in vivo in bacteria to support client folding. It also suggests that this collaboration already functional in bacteria has served as an evolutionary basis for a more complex Hsp70-Hsp90 collaboration found in eukaryotes.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Shewanella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligação Proteica , Dobramento de Proteína , Shewanella/genética , Shewanella/metabolismo
2.
Environ Microbiol ; 25(11): 2447-2464, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549929

RESUMO

Bacterial genomes are a huge reservoir of genes encoding J-domain protein co-chaperones that recruit the molecular chaperone DnaK to assist protein substrates involved in survival, adaptation, or fitness. The atc operon of the aquatic mesophilic bacterium Shewanella oneidensis encodes the proteins AtcJ, AtcA, AtcB, and AtcC, and all of them, except AtcA, are required for growth at low temperatures. AtcJ is a short J-domain protein that interacts with DnaK, but also with AtcC through its 21 amino acid C-terminal domain. This interaction network is critical for cold growth. Here, we show that AtcJ represents a subfamily of short J-domain proteins that (i) are found in several environmental, mostly aquatic, ß- or É£-proteobacteria and (ii) contain a conserved PX7 W motif in their C-terminal extension. Using a combination of NMR, biochemical and genetic approaches, we show that the hydrophobic nature of the tryptophan of the S. oneidensis AtcJ PX7 W motif determines the strong AtcJ-AtcC interaction essential for cold growth. The AtcJ homologues are encoded by operons containing at least the S. oneidensis atcA, atcB, and atcC homologues. These findings suggest a conserved network of DnaK and Atc proteins necessary for low-temperature growth and, given the variation in the atc operons, possibly for other biological functions.


Assuntos
Proteínas de Escherichia coli , Proteobactérias , Proteobactérias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Arginina , Temperatura Baixa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética
3.
Biochem Biophys Res Commun ; 535: 66-72, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33341675

RESUMO

Bacteria possess several molecular pathways to adapt to changing environments and to stress conditions. One of these pathways involves a complex network of chaperone proteins that together control proteostasis. In the aquatic bacterium Shewanella oneidensis, we have recently identified a previously unknown co-chaperone of the DnaK/Hsp70 chaperone system, AtcJ, that is essential for adaptation to low temperatures. AtcJ is encoded in the atcJABC operon, whose products, together with DnaK, form a protein network allowing growth at low temperature. However, how these proteins allow cold adaptation is unknown. Here, we found that AtcB directly interacts with the RNA polymerase and decreases its activity. In addition, AtcB overproduction prevents bacterial growth due to RNA polymerase inhibition. Together, these results suggest that the Atc proteins could direct the DnaK chaperone to the RNA polymerase to sustain life at low temperatures.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Shewanella/metabolismo , Adaptação Fisiológica , Temperatura Baixa , Escherichia coli , Ligação Proteica , Subunidades Proteicas/metabolismo , Shewanella/crescimento & desenvolvimento , Transcrição Gênica
4.
Anal Biochem ; 620: 114139, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621526

RESUMO

Chemotaxis allows bacteria to detect specific compounds and move accordingly. This pathway involves signal detection by chemoreceptors (MCPs). Attributing a chemoreceptor to a ligand is difficult because there is a lot of redundancy in the MCPs that recognize a single ligand. We propose a methodology to define which chemoreceptors bind a given ligand. First, an MCP is overproduced to increase sensitivity to the ligand(s) it recognizes, thus promoting accumulation of cells around an agarose plug containing a low attractant concentration. Second, the ligand-binding domain (LBD) of the chemoreceptor is fused to maltose-binding protein (MBP), which facilitates purification and provides a control for a thermal shift assay (TSA). An increase in the melting temperature of the LBD in the presence of the ligand indicates that the chemoreceptor directly binds it. We showed that overexpression of two Shewanella oneidensis chemoreceptors (SO_0987 and SO_1056) promoted swimming toward an agarose plug containing a low concentration of chromate. The LBD of each of the two chemoreceptors was fused to MBP. A TSA revealed that only the LBD from SO_1056 had its melting temperature increased by chromate. In conclusion, we describe an efficient approach to define chemoreceptor-ligand pairs before undertaking more-sophisticated biochemical and structural studies.


Assuntos
Proteínas de Bactérias/química , Shewanella/química , Proteínas de Bactérias/genética , Ligantes , Proteínas Ligantes de Maltose/química , Temperatura de Transição
5.
Environ Microbiol ; 21(1): 81-97, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252211

RESUMO

Shewanella oneidensis is an aquatic proteobacterium with remarkable respiratory and chemotactic abilities. It is also capable of forming biofilms either associated to surfaces (SSA-biofilm) or at the air-liquid interface (pellicle). We have previously shown that pellicle biogenesis in S. oneidensis requires the flagellum and the chemotaxis regulatory system including CheA3 kinase and CheY3 response regulator. Here we searched for additional factors involved in pellicle development. Using a multicopy library of S. oneidensis chromosomal fragments, we identified two genes encoding putative diguanylate cyclases (pdgA and pdgB) and allowing pellicle formation in the non-pellicle-forming cheY3-deleted mutant. A mutant deleted of both pdgA and pdgB is affected during pellicle development. By overexpressing phosphodiesterase encoding genes, we confirmed the key role of c-di-GMP in pellicle biogenesis. The mxd operon, previously proposed to encode proteins involved in exopolysaccharide biosynthesis, is also essential for pellicle formation. In addition, we showed that the MxdA protein, containing a degenerate GGDEF motif, binds c-di-GMP and interacts with both CheY3 and PdgA. Therefore, we propose that pellicle biogenesis in S. oneidensis is controlled by a complex pathway that involves the chemotaxis response regulator CheY3, the two putative diguanylate cyclases PdgA and PdgB, and the c-di-GMP binding protein MxdA.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/metabolismo , Shewanella/enzimologia , Proteínas de Bactérias/genética , Biofilmes , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Flagelos/genética , Flagelos/metabolismo , Óperon , Fósforo-Oxigênio Liases/genética , Shewanella/genética , Shewanella/crescimento & desenvolvimento , Shewanella/fisiologia , Transdução de Sinais
6.
Appl Environ Microbiol ; 85(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31300400

RESUMO

The genus Shewanella is well known for its genetic diversity, its outstanding respiratory capacity, and its high potential for bioremediation. Here, a novel strain isolated from sediments of the Indian Ocean was characterized. A 16S rRNA analysis indicated that it belongs to the species Shewanella decolorationis It was named Shewanella decolorationis LDS1. This strain presented an unusual ability to grow efficiently at temperatures from 24°C to 40°C without apparent modifications of its metabolism, as shown by testing respiratory activities or carbon assimilation, and in a wide range of salt concentrations. Moreover, S. decolorationis LDS1 tolerates high chromate concentrations. Indeed, it was able to grow in the presence of 4 mM chromate at 28°C and 3 mM chromate at 40°C. Interestingly, whatever the temperature, when the culture reached the stationary phase, the strain reduced the chromate present in the growth medium. In addition, S. decolorationis LDS1 degrades different toxic dyes, including anthraquinone, triarylmethane, and azo dyes. Thus, compared to Shewanella oneidensis, this strain presented better capacity to cope with various abiotic stresses, particularly at high temperatures. The analysis of genome sequence preliminary data indicated that, in contrast to S. oneidensis and S. decolorationis S12, S. decolorationis LDS1 possesses the phosphorothioate modification machinery that has been described as participating in survival against various abiotic stresses by protecting DNA. We demonstrate that its heterologous production in S. oneidensis allows it to resist higher concentrations of chromate.IMPORTANCEShewanella species have long been described as interesting microorganisms in regard to their ability to reduce many organic and inorganic compounds, including metals. However, members of the Shewanella genus are often depicted as cold-water microorganisms, although their optimal growth temperature usually ranges from 25 to 28°C under laboratory growth conditions. Shewanella decolorationis LDS1 is highly attractive, since its metabolism allows it to develop efficiently at temperatures from 24 to 40°C, conserving its ability to respire alternative substrates and to reduce toxic compounds such as chromate or toxic dyes. Our results clearly indicate that this novel strain has the potential to be a powerful tool for bioremediation and unveil one of the mechanisms involved in its chromate resistance.


Assuntos
Cromatos/metabolismo , Farmacorresistência Bacteriana , Shewanella/metabolismo , Biotecnologia , Sedimentos Geológicos/microbiologia , Oceano Índico , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Shewanella/classificação , Shewanella/genética , Shewanella/crescimento & desenvolvimento
7.
J Biol Chem ; 292(36): 14921-14928, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28729423

RESUMO

To cope with environmental stresses, bacteria have evolved various strategies, including the general stress response (GSR). GSR is governed by an alternative transcriptional σ factor named σS (RpoS) that associates with RNA polymerase and controls the expression of numerous genes. Previously, we have reported that posttranslational regulation of σS in the aquatic bacterium Shewanella oneidensis involves the CrsR-CrsA partner-switching regulatory system, but the exact mechanism by which CrsR and CrsA control σS activity is not completely unveiled. Here, using a translational gene fusion, we show that CrsR sequesters and protects σS during the exponential growth phase and thus enables rapid gene activation by σS as soon as the cells enter early stationary phase. We further demonstrate by an in vitro approach that this protection is mediated by the anti-σ domain of CrsR. Structure-based alignments of CsrR orthologs and other anti-σ factors identified a CsrR-specific region characteristic of a new family of anti-σ factors. We found that CrsR is conserved in many aquatic proteobacteria, and most of the time it is associated with CrsA. In conclusion, our results suggest that CsrR-mediated protection of σS during exponential growth enables rapid adaptation of S. oneidensis to changing and stressful growth conditions, and this ability is probably widespread among aquatic proteobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Shewanella/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico , Adaptação Fisiológica
8.
PLoS Genet ; 11(4): e1005170, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25898178

RESUMO

Enterococcus faecalis BM4518 is resistant to vancomycin by synthesis of peptidoglycan precursors ending in D-alanyl-D-serine. In the chromosomal vanG locus, transcription of the resistance genes from the PYG resistance promoter is inducible and, upstream from these genes, there is an unusual three-component regulatory system encoded by the vanURS(G) operon from the P(UG) regulatory promoter. In contrast to the other van operons in enterococci, the vanG operon possesses the additional vanU(G) gene which encodes a transcriptional regulator whose role remains unknown. We show by DNase I footprinting, RT-qPCR, and reporter proteins activities that VanU(G), but not VanR(G), binds to P(UG) and negatively autoregulates the vanURS(G) operon and that it also represses PYG where it overlaps with VanR(G) for binding. In clinical isolate BM4518, the transcription level of the resistance genes was dependent on vancomycin concentration whereas, in a ΔvanUG mutant, resistance was expressed at a maximum level even at low concentrations of the inducer. The binding competition between VanU(G) and VanR(G) on the P(YG) resistance promoter allowed rheostatic activation of the resistance operon depending likely on the level of VanR(G) phosphorylation by the VanS(G) sensor. In addition, there was cross-talk between VanS(G) and VanR'(G), a VanR(G) homolog, encoded elsewhere in the chromosome indicating a sophisticated and subtle regulation of vancomycin resistance expression by a complex two-component system.


Assuntos
Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/genética , Fatores de Transcrição/genética , Resistência a Vancomicina/genética , Pegada de DNA , Enterococcus faecalis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Óperon/genética , Peptidoglicano/genética , Transcrição Gênica , Vancomicina/uso terapêutico
9.
J Biol Chem ; 291(50): 26151-26163, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27810894

RESUMO

Here, we show that a partner-switching system of the aquatic Proteobacterium Shewanella oneidensis regulates post-translationally σS (also called RpoS), the general stress response sigma factor. Genes SO2118 and SO2119 encode CrsA and CrsR, respectively. CrsR is a three-domain protein comprising a receiver, a phosphatase, and a kinase/anti-sigma domains, and CrsA is an anti-sigma antagonist. In vitro, CrsR sequesters σS and possesses kinase and phosphatase activities toward CrsA. In turn, dephosphorylated CrsA binds the anti-sigma domain of CrsR to allow the release of σS This study reveals a novel pathway that post-translationally regulates the general stress response sigma factor differently than what was described for other proteobacteria like Escherichia coli We argue that this pathway allows probably a rapid bacterial adaptation.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Shewanella/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico/fisiologia , Proteínas de Bactérias/genética , Fosfoproteínas Fosfatases/genética , Fosforilação/fisiologia , Proteínas Quinases/genética , Shewanella/genética , Fator sigma/genética
10.
J Biol Chem ; 288(8): 5426-42, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23281480

RESUMO

The Escherichia coli L-cysteine desulfurase IscS mobilizes sulfur from L-cysteine for the synthesis of several biomolecules such as iron-sulfur (FeS) clusters, molybdopterin, thiamin, lipoic acid, biotin, and the thiolation of tRNAs. The sulfur transfer from IscS to various biomolecules is mediated by different interaction partners (e.g. TusA for thiomodification of tRNAs, IscU for FeS cluster biogenesis, and ThiI for thiamine biosynthesis/tRNA thiolation), which bind at different sites of IscS. Transcriptomic and proteomic studies of a ΔtusA strain showed that the expression of genes of the moaABCDE operon coding for proteins involved in molybdenum cofactor biosynthesis is increased under aerobic and anaerobic conditions. Additionally, under anaerobic conditions the expression of genes encoding hydrogenase 3 and several molybdoenzymes such as nitrate reductase were also increased. On the contrary, the activity of all molydoenzymes analyzed was significantly reduced in the ΔtusA mutant. Characterization of the ΔtusA strain under aerobic conditions showed an overall low molybdopterin content and an accumulation of cyclic pyranopterin monophosphate. Under anaerobic conditions the activity of nitrate reductase was reduced by only 50%, showing that TusA is not essential for molybdenum cofactor biosynthesis. We present a model in which we propose that the direction of sulfur transfer for each sulfur-containing biomolecule is regulated by the availability of the interaction partner of IscS. We propose that in the absence of TusA, more IscS is available for FeS cluster biosynthesis and that the overproduction of FeS clusters leads to a modified expression of several genes.


Assuntos
Coenzimas/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Metaloproteínas/biossíntese , Enxofre/metabolismo , Liases de Carbono-Enxofre/metabolismo , Eletroforese em Gel Bidimensional , Proteínas Ferro-Enxofre/metabolismo , Modelos Biológicos , Cofatores de Molibdênio , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pteridinas , RNA de Transferência/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Compostos de Sulfidrila/química , Sulfetos/química , Ressonância de Plasmônio de Superfície/métodos , Transcrição Gênica
11.
Environ Microbiol ; 15(11): 3108-18, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23751053

RESUMO

Floating biofilm, or pellicle, is a biofilm found at the air-liquid interface. Here, we show that pellicle development of the aquatic bacterium Shewanella oneidensis is under the control of the chemotaxis system (Che3), a regulatory system known to pilot planktonic cell motion according to environmental cues. Deletion of the histidine kinase cheA3 or the response regulator cheY3 gene led to a heterogeneous pellicle or to the absence of pellicle respectively. In addition, a non-phosphorylatable CheY3-D56A mutant was unable to promote pellicle formation. Kinetic analysis revealed that pellicle formation occurs in three steps: rapid formation of a thin pellicle evolving into a heterogeneous biofilm and finally into a thick homogeneous biofilm. Depletion of oxygen not only abolished initiation of pellicle formation but also blocked pellicle maturation. This study thus demonstrates an essential role of aerotaxis (chemotaxis towards oxygen) in floating biofilm development in S. oneidensis, and it also reveals that pellicle formation is a step-by-step process.


Assuntos
Biofilmes/crescimento & desenvolvimento , Quimiotaxia/fisiologia , Oxigênio/metabolismo , Shewanella/fisiologia , Quimiotaxia/genética , Flagelos/metabolismo , Cinética , Fosforilação , Deleção de Sequência , Shewanella/genética
12.
FEBS J ; 289(21): 6752-6766, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35668695

RESUMO

Chemoreceptors are usually transmembrane proteins dedicated to the detection of compound gradients or signals in the surroundings of a bacterium. After detection, they modulate the activation of CheA-CheY, the core of the chemotactic pathway, to allow cells to move upwards or downwards depending on whether the signal is an attractant or a repellent, respectively. Environmental bacteria such as Shewanella oneidensis harbour dozens of chemoreceptors or MCPs (methyl-accepting chemotaxis proteins). A recent study revealed that MCP SO_1056 of S. oneidensis binds chromate. Here, we show that this MCP also detects an additional attractant (l-malate) and two repellents (nickel and cobalt). The experiments were performed in vivo by the agarose-in-plug technique after overproducing MCP SO_1056 and in vitro, when possible, by submitting the purified ligand-binding domain (LBD) of SO_1056 to a thermal shift assay (TSA) coupled to isothermal titration calorimetry (ITC). ITC assays revealed a KD of 3.4 µm for l-malate and of 47.7 µm for nickel. We conclude that MCP SO_1056 binds attractants and repellents of unrelated composition. The LBD of SO_1056 belongs to the double Cache_1 family and is highly homologous to PctA, a chemoreceptor from Pseudomonas aeruginosa that detects several amino acids. Therefore, LBDs of the same family can bind diverse compounds, confirming that experimental approaches are required to define accurate LBD-binding molecules or signals.


Assuntos
Quimiotaxia , Malatos , Níquel , Proteínas de Bactérias/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil
13.
Res Microbiol ; 173(8): 103967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35660524

RESUMO

Chromate is a toxic metal that enters bacteria by using oxyanion importers. Here, we show that each mutant of the Tol-Pal system of Escherichia coli exhibited increased chromate resistance. This system, which spans the cell envelope, plays a major role in envelope integrity and septation. The ΔtolQR mutant accumulated three-fold less chromate than the wild-type. Addition of phosphate but not sulfate to rich medium drastically reduced chromate toxicity and import in the wild-type strain. Furthermore, the intracellular concentration of free inorganic phosphate was significantly reduced for the ΔtolR mutant in comparison to the wild-type strain. Moreover, extracellular labeled phosphate was significantly less incorporated into the ΔtolR mutant. Finally, two distinct TolQR mutant complexes, specifically affected in Tol-Pal energization without affecting the TolQRA complex structure, did not complement the ΔtolQR mutant for inorganic phosphate accumulation. We thus propose that, while the Pst system is well known to import inorganic phosphate, the Tol-Pal system participates to phosphate uptake in particular at medium to high extracellular phosphate concentrations. Since mutations disabling the Tol-Pal system lead to pleiotropic effects, chromate resistance and reduced inorganic phosphate import could occur from an indirect effect of mutations in components of the Tol-Pal system.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cromatos , Fosfatos
14.
J Bacteriol ; 193(23): 6512-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965574

RESUMO

The TorD family of specific chaperones is divided into four subfamilies dedicated to molybdoenzyme biogenesis and a fifth one, exemplified by YcdY of Escherichia coli, for which no defined partner has been identified so far. We propose that YcdY is the chaperone of YcdX, a zinc protein involved in the swarming motility process of E. coli, since YcdY interacts with YcdX and increases its activity in vitro.


Assuntos
Escherichia coli/metabolismo , Família Multigênica , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica
15.
Mol Microbiol ; 76(6): 1427-43, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20398205

RESUMO

Bacterial pathogenesis often depends on regulatory networks, two-component systems and small RNAs (sRNAs). In Pseudomonas aeruginosa, the RetS sensor pathway downregulates expression of two sRNAs, rsmY and rsmZ. Consequently, biofilm and the Type Six Secretion System (T6SS) are repressed, whereas the Type III Secretion System (T3SS) is activated. We show that the HptB signalling pathway controls biofilm and T3SS, and fine-tunes P. aeruginosa pathogenesis. We demonstrate that RetS and HptB intersect at the GacA response regulator, which directly controls sRNAs production. Importantly, RetS controls both sRNAs, whereas HptB exclusively regulates rsmY expression. We reveal that HptB signalling is a complex regulatory cascade. This cascade involves a response regulator, with an output domain belonging to the phosphatase 2C family, and likely an anti-anti-sigma factor. This reveals that the initial input in the Gac system comes from several signalling pathways, and the final output is adjusted by a differential control on rsmY and rsmZ. This is exemplified by the RetS-dependent but HptB-independent control on T6SS. We also demonstrate a redundant action of the two sRNAs on T3SS gene expression, while the impact on pel gene expression is additive. These features underpin a novel mechanism in the fine-tuned regulation of gene expression.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/patogenicidade , RNA Bacteriano/biossíntese , RNA Interferente Pequeno/biossíntese , Transdução de Sinais , Biofilmes/crescimento & desenvolvimento , Transporte Biológico , Genes Reporter , Modelos Biológicos , RNA Bacteriano/genética , RNA Interferente Pequeno/genética , beta-Galactosidase/metabolismo
16.
Biomolecules ; 11(11)2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34827611

RESUMO

Adhesion to the digestive mucosa is considered a key factor for bacterial persistence within the gut. In this study, we show that Ruminococcus gnavus E1 can express the radA gene, which encodes an adhesin of the MSCRAMMs family, only when it colonizes the gut. The RadA N-terminal region contains an all-ß bacterial Ig-like domain known to interact with collagens. We observed that it preferentially binds human immunoglobulins (IgA and IgG) and intestinal mucins. Using deglycosylated substrates, we also showed that the RadA N-terminal region recognizes two different types of motifs, the protein backbone of human IgG and the glycan structure of mucins. Finally, competition assays with lectins and free monosaccharides identified Galactose and N-Acetyl-Galactosamine motifs as specific targets for the binding of RadA to mucins and the surface of human epithelial cells.


Assuntos
Clostridiales , Mucinas , Polissacarídeos , Simbiose
17.
Mol Microbiol ; 73(2): 278-90, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19555457

RESUMO

Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N-oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N-oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the DeltapH component of the proton motive force. These data, together with those concerning response to metals (Bencharit and Ward, 2005), support the idea that, in S. oneidensis, taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.


Assuntos
Quimiotaxia , Transporte de Elétrons , Metabolismo Energético , Shewanella/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Metilaminas/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Deleção de Sequência , Shewanella/genética
18.
J Food Prot ; 73(7): 1344-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20615351

RESUMO

We have developed a method for rapid quantification of fish spoilage bacteria based on quantitative PCR with degenerated oligonucleotides that hybridize on the torA gene coding for trimethylamine N-oxide reductase, one of the major bacterial enzymes in fish spoilage. To show the utility of this gene, we used a regular PCR with DNA extracts from whiting (Merlangius merlangus) and plaice (Pleuronectes platessa) stored in ice. Quantitative PCR showed that the number of copies of the torA gene, i.e., the number of spoilage bacteria, increases with length of storage. This approach can therefore be used to evaluate freshness for the two fish species studied (whiting and plaice).


Assuntos
Linguado/metabolismo , Gadiformes/metabolismo , Oxirredutases N-Desmetilantes/genética , Alimentos Marinhos/análise , Alimentos Marinhos/normas , Animais , Comportamento do Consumidor , Qualidade de Produtos para o Consumidor , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , DNA/análise , Manipulação de Alimentos/métodos , Humanos , Oxirredutases N-Desmetilantes/metabolismo , Reação em Cadeia da Polimerase , Especificidade da Espécie
19.
FEMS Microbiol Rev ; 44(2): 155-170, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922549

RESUMO

The Gram-negative Shewanella bacterial genus currently includes about 70 species of mostly aquatic γ--proteobacteria, which were isolated around the globe in a multitude of environments such as surface freshwater and the deepest marine trenches. Their survival in such a wide range of ecological niches is due to their impressive physiological and respiratory versatility. Some strains are among the organisms with the highest number of respiratory systems, depending on a complex and rich metabolic network. Implicated in the recycling of organic and inorganic matter, they are important components of organism-rich oxic/anoxic interfaces, but they also belong to the microflora of a broad group of eukaryotes from metazoans to green algae. Examples of long-term biological interactions like mutualism or pathogeny have been described, although molecular determinants of such symbioses are still poorly understood. Some of these bacteria are key organisms for various biotechnological applications, especially the bioremediation of hydrocarbons and metallic pollutants. The natural ability of these prokaryotes to thrive and detoxify deleterious compounds explains their use in wastewater treatment, their use in energy generation by microbial fuel cells and their importance for resilience of aquatic ecosystems.


Assuntos
Ecossistema , Shewanella/classificação , Shewanella/fisiologia , Organismos Aquáticos/fisiologia , Microbiologia Ambiental , Microbiologia Industrial , Simbiose
20.
NPJ Biofilms Microbiomes ; 6(1): 54, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188190

RESUMO

The core of the chemotaxis system of Shewanella oneidensis is made of the CheA3 kinase and the CheY3 regulator. When appropriated, CheA3 phosphorylates CheY3, which, in turn, binds to the rotor of the flagellum to modify the swimming direction. In this study, we showed that phosphorylated CheY3 (CheY3-P) also plays an essential role during biogenesis of the solid-surface-associated biofilm (SSA-biofilm). Indeed, in a ΔcheY3 strain, the formation of this biofilm is abolished. Using the phospho-mimetic CheY3D56E mutant, we showed that CheY-P is required throughout the biogenesis of the biofilm but CheY3 phosphorylation is independent of CheA3 during this process. We have recently found that CheY3 interacts with two diguanylate cyclases (DGCs) and with MxdA, the c-di-GMP effector, probably triggering exopolysaccharide synthesis by the Mxd machinery. Here, we discovered two additional DGCs involved in SSA-biofilm development and showed that one of them interacts with CheY3. We therefore propose that CheY3-P acts together with DGCs to control SSA-biofilm formation. Interestingly, two orthologous CheY regulators complement the biofilm defect of a ΔcheY3 strain, supporting the idea that biofilm formation could involve CheY regulators in other bacteria.


Assuntos
Biofilmes/crescimento & desenvolvimento , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Mutação , Shewanella/fisiologia , Anabasina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quimiotaxia , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quimiotáticas Aceptoras de Metil/genética , Nicotina/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA