Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Opt Lett ; 49(6): 1556-1559, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489449

RESUMO

We combine parametric frequency upconversion with the single-photon counting technology to achieve terahertz (THz) detection sensitivity down to the zeptojoule (zJ) pulse energy level. Our detection scheme employs a near-infrared ultrafast source, a GaP nonlinear crystal, optical filters, and a single-photon avalanche diode. This configuration is able to resolve 1.4 zJ (1.4 × 10-21 J) THz pulse energy, corresponding to 1.5 photons per pulse, when the signal is averaged within only 1 s (or 50,000 pulses). A single THz pulse can also be detected when its energy is above 1185 zJ. These numbers correspond to the noise-equivalent power and THz-to-NIR photon detection efficiency of 1.3 × 10-16 W/Hz1/2 and 5.8 × 10-2%, respectively. To test our scheme, we perform spectroscopy of the water vapor between 1 and 3.7 THz and obtain results that are in agreement with those acquired with a standard electro-optic sampling (EOS) method. Our technique provides a 0.2 THz spectral resolution offering a fast alternative to EOS THz detection for monitoring specific spectral components in spectroscopy, imaging, and communication applications.

2.
Opt Express ; 31(20): 32468-32477, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859049

RESUMO

We demonstrate a table-top high-field terahertz (THz) source based on optical rectification of a collimated near-infrared pulse in gallium phosphide (GaP) to produce peak fields above 300 kV/cm with a spectrum centered at 2.6 THz. The experimental configuration, based on tilted-pulse-front phase matching, is implemented with a phase grating etched directly onto the front surface of the GaP crystal. Although the THz generation efficiency starts showing a saturation onset as the near-infrared pulse energy reaches 0.57 mJ, we can expect our configuration to yield THz peak fields up to 866 kV/cm when a 5 mJ generation NIR pulse is used. This work paves the way towards broadband, high-field THz sources able to access a new class of THz coherent control and nonlinear phenomena driven at frequencies above 2 THz.

3.
Appl Opt ; 62(15): 4097-4101, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37706722

RESUMO

Terahertz time-domain spectroscopy (THz-TDS) is a powerful technique that enables the characterization of a large range of bulk materials, devices, and products. Although this technique has been increasingly used in research and industry, the standard THz-TDS configuration relying on the use of a near-infrared (NIR) laser source remains experimentally complex and relatively costly, impeding its availability to those without the expertise to build a high-performance setup based on nonlinear optics or without the financial means to acquire a commercial unit. Broadband THz-TDS systems require an even larger financial investment, primarily because the generation and detection of spectral components exceeding 3 THz typically need an ultrafast NIR source delivering sub-100-fs pulses. Such an ultrafast source can be bulky and cost upwards of $100,000. Here, we present a broadband, compact, and portable THz-TDS system comprising three modules that allow for the implementation of a single low-cost ultrafast laser, hence significantly decreasing the overall cost of the system. In the first module, the output laser pulses are spectrally broadened through nonlinear propagation in a polarization-maintaining optical fiber and then temporally compressed to achieve a higher peak power. The other two modules utilize thick nonlinear crystals with periodically patterned surfaces that diffract NIR pulses and optimize the efficiency of THz generation and detection processes by enabling a noncollinear beam geometry. Phase-matching conditions in the nonlinear crystals are controlled by the period of the gratings to gain access to a large spectral THz bandwidth. The whole system, combining these three modules, provides access to a THz spectrum peaking at 3.5 THz and extending beyond 6 THz with a maximum dynamic range of 50 dB for time-resolved spectroscopy applications. We demonstrate the functionality of this configuration by performing THz spectroscopy measurements of water vapor contained within a closed cell. Our compact system design paves the way towards a high-performance, yet cost-effective, THz-TDS system that can be readily used in academia and industry.

4.
Sensors (Basel) ; 22(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35336554

RESUMO

We present the design, fabrication, and testing of a drone-mountable gas sensing platform for environmental monitoring applications. An array of graphene-based field-effect transistors in combination with commercial humidity and temperature sensors are used to relay information by wireless communication about the presence of airborne chemicals. We show that the design, based on an ESP32 microcontroller combined with a 32-bit analog-to-digital converter, can be used to achieve an electronic response similar, within a factor of two, to state-of-the-art laboratory monitoring equipment. The sensing platform is then mounted on a drone to conduct field tests, on the ground and in flight. During these tests, we demonstrate a one order of magnitude reduction in environmental noise by reducing contributions from humidity and temperature fluctuations, which are monitored in real-time with a commercial sensor integrated to the sensing platform. The sensing device is controlled by a mobile application and uses LoRaWAN, a low-power, wide-area networking protocol, for real-time data transmission to the cloud, compatible with Internet of Things (IoT) applications.


Assuntos
Grafite , Aplicativos Móveis , Umidade , Monitorização Fisiológica/métodos , Dispositivos Aéreos não Tripulados
5.
Opt Express ; 28(14): 20296-20304, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680092

RESUMO

We demonstrate ultrafast tuning of a plasmonic spectral filter at terahertz (THz) frequencies. The device is made of periodically spaced gold crosses deposited on the surface of an undoped silicon wafer in which transient free carriers can be optically injected with a femtosecond resonant pulse. We demonstrate the concept by measuring the transmission spectrum of a notch filter using time-domain THz spectroscopy. Proper synchronization of the THz probe and visible excitation pulses leads to an enhanced transmission at the resonance by more than two orders of magnitude. Finite-difference time-domain simulations, which are in agreement with the experimental results, show that the underlying mechanisms responsible for the resonance blueshift and linewidth broadening can be attributed to the photoinduced change in dielectric properties of the substrate. This is supported by the numerically simulated field distribution and reflection/transmission coefficients. The device can be used in future pulse shaping and ultrafast switching experiments.

6.
Opt Express ; 28(3): 3237-3248, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121996

RESUMO

We theoretically investigate the propagation of broadband single-cycle terahertz (THz) pulses through a medium with a nonlinear optical response. Our model takes into account non-paraxial effects, self-focusing and diffraction, as well as dispersion, in both the linear and nonlinear optical regimes. We investigate the contribution of non-instantaneous Kerr-type nonlinearity to the overall instantaneous and delayed Kerr effect at the THz frequencies. We show how increasing the nonlinear relaxation time and its dispersion modifies the THz pulse after the propagation through a transparent medium. We also discuss the effect of linear dispersion on self-action during the pulse propagation.

7.
Nano Lett ; 19(9): 6429-6434, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31454252

RESUMO

Resonant metasurfaces are devices composed of nanostructured subwavelength scatterers that generate narrow optical resonances, enabling applications in filtering, nonlinear optics, and molecular fingerprinting. It is highly desirable for these applications to incorporate such devices with multiple high-quality-factor resonances; however, it can be challenging to obtain more than a pair of narrow resonances in a single plasmonic surface. Here, we demonstrate a multiresonant metasurface that operates by extending the functionality of surface lattice resonances, which are the collective responses of arrays of metallic nanoparticles. This device features a series of resonances with high-quality factors (Q ∼ 40), an order of magnitude larger than what is typically achievable with plasmonic nanoparticles, as well as a narrow free spectral range. This design methodology can be used to better tailor the transmission spectrum of resonant metasurfaces and represents an important step toward the miniaturization of optical devices.

8.
Opt Express ; 26(11): 13876-13882, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877433

RESUMO

Control over the spectral phase of a light pulse is a fundamental step toward arbitrary signal generation in a spectral band. For the terahertz spectral regime, pulse shaping holds the key for applications ranging from ultra-high speed wireless data transmission to quantum control with shaped fields. In this work, we demonstrate a technique for all-optical and reconfigurable control of the spectral phase of a light pulse in the important terahertz (THz) band. The technique is based on interaction of a guided THz pulse with patterned photoexcited regions within a uniform silicon-filled parallel-plate waveguide. We use this platform to demonstrate broadband and tunable positive and negative chirp of a THz pulse, as well as control of the pulse carrier envelope phase.

9.
Opt Lett ; 41(16): 3795-8, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519091

RESUMO

Second harmonic (SH) generation with 300 fs pump pulses is reported in a xenon-filled hollow-core photonic crystal fiber (PCF) across which an external bias voltage is applied. Phase-matched intermodal conversion from a pump light in the LP01 mode to SH light in the LP02 mode is achieved at a particular gas pressure. Using periodic electrodes, quasi-phase-matched SH generation into the low-loss LP01 mode is achieved at a different pressure. The low linear dispersion of the gas enables phase-matching over a broad spectral window, resulting in a measured bandwidth of ∼10 nm at high pump energies. A conversion efficiency of ∼18%/mJ is obtained. Gas-filled anti-resonant-reflecting hollow-core PCF uniquely offers pressure-tunable phase-matching, ultra-broadband guidance, and a very high optical damage threshold, which hold great promise for efficient three-wave mixing, especially in difficult-to-access regions of the electromagnetic spectrum.

10.
Opt Lett ; 41(9): 1961-4, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27128049

RESUMO

We report a hollow-core photonic crystal fiber that is engineered so as to strongly suppress higher-order modes, i.e., to provide robust LP01 single-mode guidance in all the wavelength ranges where the fiber guides with low loss. Encircling the core is a single ring of nontouching glass elements whose modes are tailored to ensure resonant phase-matched coupling to higher-order core modes. We show that the resulting modal filtering effect depends on only one dimensionless shape parameter, akin to the well-known d/Λ parameter for endlessly single-mode solid-core PCF. Fabricated fibers show higher-order mode losses some ∼100 higher than for the LP01 mode, with LP01 losses <0.2 dB/m in the near-infrared and a spectral flatness ∼1 dB over a >110 THz bandwidth.

11.
Opt Express ; 23(2): 895-901, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835849

RESUMO

We use Raman amplification in hydrogen-filled hollow-core kagomé photonic crystal fiber to generate high energy pulses in pure single higher-order modes. The desired higher-order mode at the Stokes frequency is precisely seeded by injecting a pulse of light from the side, using a prism to select the required modal propagation constant. An intense pump pulse in the fundamental mode transfers its energy to the Stokes seed pulse with measured gains exceeding 60 dB and output pulse energies as high as 8 µJ. A pressure gradient is used to suppress stimulated Raman scattering into the fundamental mode at the Stokes frequency. The growth of the Stokes pulse energy is experimentally and theoretically investigated for six different higher-order modes. The technique has significant advantages over the use of spatial light modulators to synthesize higher-order mode patterns, since it is very difficult to perfectly match the actual eigenmode of the fiber core, especially for higher-order modes with complex multi-lobed transverse field profiles.

12.
Opt Lett ; 40(15): 3679-82, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26258387

RESUMO

Second-order nonlinearity is induced inside a Xe-filled hollow-core photonic crystal fiber (PCF) by applying an external dc field. The system uniquely allows the linear optical properties to be adjusted by changing the gas pressure, allowing for precise phase matching between the LP01 mode at 1064 nm and the LP02 mode at 532 nm. The dependence of the second-harmonic conversion efficiency on the gas pressure, launched pulse energy, and applied field agrees well with theory. The ultra-broadband guidance offered by anti-resonant reflecting hollow-core PCFs, for example, a kagomé PCF, offers many possibilities for generating light in traditionally difficult-to-access regions of the electromagnetic spectrum, such as the ultraviolet or the terahertz windows. The system can also be used for noninvasive measurements of the transmission loss in a hollow-core PCF over a broad spectrum, including the deep and vacuum UV regions.

13.
Opt Lett ; 39(8): 2435-8, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24979012

RESUMO

In ultrabroadband terahertz electro-optic sampling (EOS), spectral filtering of the gate pulse can strongly reduce the quantum noise while the signal level is only weakly affected. The concept is tested for phase-matched electro-optic detection of field transients centered at 45 THz with 12 fs near-infrared gate pulses in AgGaS2. Our new approach increases the experimental signal-to-noise ratio by a factor of 3 compared to standard EOS. Under certain conditions an improvement factor larger than 5 is predicted by our theoretical analysis.

14.
Nat Commun ; 15(1): 4427, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789427

RESUMO

Atoms and their different arrangements into molecules are nature's building blocks. In a regime of strong coupling, matter hybridizes with light to modify physical and chemical properties, hence creating new building blocks that can be used for avant-garde technologies. However, this regime relies on the strong confinement of the optical field, which is technically challenging to achieve, especially at terahertz frequencies in the far-infrared region. Here we demonstrate several schemes of electromagnetic field confinement aimed at facilitating the collective coupling of a localized terahertz photonic mode to molecular vibrations. We observe an enhanced vacuum Rabi splitting of 200 GHz from a hybrid cavity architecture consisting of a plasmonic metasurface, coupled to glucose, and interfaced with a planar mirror. This enhanced light-matter interaction is found to emerge from the modified intracavity field of the cavity, leading to an enhanced zero-point electric field amplitude. Our study provides key insight into the design of polaritonic platforms with organic molecules to harvest the unique properties of hybrid light-matter states.

15.
Nat Commun ; 14(1): 2595, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147407

RESUMO

Slow motion movies allow us to see intricate details of the mechanical dynamics of complex phenomena. If the images in each frame are replaced by terahertz (THz) waves, such movies can monitor low-energy resonances and reveal fast structural or chemical transitions. Here, we combine THz spectroscopy as a non-invasive optical probe with a real-time monitoring technique to demonstrate the ability to resolve non-reproducible phenomena at 50k frames per second, extracting each of the generated THz waveforms every 20 µs. The concept, based on a photonic time-stretch technique to achieve unprecedented data acquisition speeds, is demonstrated by monitoring sub-millisecond dynamics of hot carriers injected in silicon by successive resonant pulses as a saturation density is established. Our experimental configuration will play a crucial role in revealing fast irreversible physical and chemical processes at THz frequencies with microsecond resolution to enable new applications in fundamental research as well as in industry.

16.
ACS Omega ; 7(14): 11973-11979, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449940

RESUMO

We present a comparative investigation between thin films of graphene oxide (GO) and chemically reduced graphene oxide (rGO) deposited onto glass substrates via spray pyrolysis. Two reduction techniques are investigated: (1) the exposition of a sprayed layer of GO to vapors of hydrazine hydrate to produce rGOV and (2) the addition of liquid hydrazine hydrate to a suspended GO solution, which is then sprayed onto a substrate to produce rGOL. Three different spectroscopy techniques, Raman, Fourier transform infrared, and UV-Vis-NIR, show that the two reduced samples have less lattice disorder in comparison to GO, with rGOL having the highest degree of reduction. Interestingly, topography characterization by atomic force microscopy reveals a morphological change occurring during the exposure to hydrazine hydrate vapors, resulting in a thickness of 110 nm for the rGOV film, which is a factor of 16 larger than rGOL and GO. Finally, I-V measurements show a significant decrease of the GO's resistivity after the reduction process, where rGOL features a resistivity 90 times lower than rGOV, confirming that rGOL has the highest degree of reduction. Our results indicate that the reduction process for rGOV is susceptible to introducing intercalated water molecules in the material while the fabrication technique for rGOL is a suitable route to obtain a material with minimal lattice disorder and properties approaching those of graphene.

17.
Sci Rep ; 11(1): 8729, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888755

RESUMO

We explore the substrate-dependent charge carrier dynamics of large area graphene films using contact-free non-invasive terahertz spectroscopy. The graphene samples are deposited on seven distinct substrates relevant to semiconductor technologies and flexible/photodetection devices. Using a Drude model for Dirac fermions in graphene and a fitting method based on statistical signal analysis, we extract transport properties such as the charge carrier density and carrier mobility. We find that graphene films supported by substrates with minimal charged impurities exhibit an enhanced carrier mobility, while substrates with a high surface roughness generally lead to a lower transport performance. The smallest amount of doping is observed for graphene placed on the polymer Zeonor, which also has the highest carrier mobility. This work provides valuable guidance in choosing an optimal substrate for graphene to enable applications where high mobility is required.

18.
ACS Sens ; 6(12): 4417-4424, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34788995

RESUMO

The ability to detect and recognize airborne chemical species is essential to enable applications in security, health, and environmental monitoring. Here, we report a sensing platform based on graphene field-effect transistor (GFET) devices combined with optical illumination for the detection of volatile compounds. We compare the change in resistance of GFET sensors upon exposure to analytes such as ethanol, dimethyl methylphosphonate (DMMP), and water vapors with and without the presence of a local illuminating ultraviolet (UV) light-emitting diode (LED). Our results show that UV illumination acts as a control knob for the electronic transport properties of graphene, increasing the device's response to ethanol, water, and DMMP, up to a factor of 54, and enabling ppb-level detection of DMMP at 800 ppb without chemical functionalization of the graphene layer. The sensing response can be optimized to reveal an analyte-specific interplay between the induced changes in carrier concentration and mobility of the GFET. These findings provide a pathway to enhancing the sensitivity of GFET sensors and a differentiation channel to improve their selectivity.


Assuntos
Grafite , Iluminação , Transistores Eletrônicos
19.
ACS Appl Mater Interfaces ; 13(51): 61751-61757, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34910450

RESUMO

Real time, rapid, and accurate detection of chemical warfare agents (CWA) is an ongoing security challenge. Typical detection methods for CWA are adapted from traditional chemistry techniques such as chromatography and mass spectrometry, which lack portability. Here, we address this challenge by evaluating graphene field effect transistors (GFETs) as a sensing platform for sarin gas using both experiment and theory. Experimentally, we measure the sensing response of GFETs when exposed to dimethyl methylphosphonate (DMMP), a less toxic compound used as simulant due to its chemical similarities to sarin. We find low detection limits of 800 ppb, the highest sensitivity reported up to date for this type of sensing platform. In addition to changes in resistance, we implement an in-operando monitor of the GFETs characteristics during and after exposure to the analyte, which gives insights into the graphene-DMMP interactions. Moreover, using theoretical calculations, we show that DMMP and sarin interact similarly with graphene, implying that GFETs should be highly sensitive to detecting sarin. GFETs offer a versatile platform for the development of compact and miniaturized devices that can provide real-time detection of dangerous chemicals in the local environment.

20.
Nat Commun ; 12(1): 974, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579934

RESUMO

Plasmonic nanostructures hold promise for the realization of ultra-thin sub-wavelength devices, reducing power operating thresholds and enabling nonlinear optical functionality in metasurfaces. However, this promise is substantially undercut by absorption introduced by resistive losses, causing the metasurface community to turn away from plasmonics in favour of alternative material platforms (e.g., dielectrics) that provide weaker field enhancement, but more tolerable losses. Here, we report a plasmonic metasurface with a quality-factor (Q-factor) of 2340 in the telecommunication C band by exploiting surface lattice resonances (SLRs), exceeding the record by an order of magnitude. Additionally, we show that SLRs retain many of the same benefits as localized plasmonic resonances, such as field enhancement and strong confinement of light along the metal surface. Our results demonstrate that SLRs provide an exciting and unexplored method to tailor incident light fields, and could pave the way to flexible wavelength-scale devices for any optical resonating application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA