Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Immunol ; 15: 1258119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426095

RESUMO

CD8+ T cells are a crucial part of the adaptive immune system, responsible for combating intracellular pathogens and tumor cells. The initial activation of T cells involves the formation of highly dynamic Ca2+ microdomains. Recently, purinergic signaling was shown to be involved in the formation of the initial Ca2+ microdomains in CD4+ T cells. In this study, the role of purinergic cation channels, particularly P2X4 and P2X7, in CD8+ T cell signaling from initial events to downstream responses was investigated, focusing on various aspects of T cell activation, including Ca2+ microdomains, global Ca2+ responses, NFAT-1 translocation, cytokine expression, and proliferation. While Ca2+ microdomain formation was significantly reduced in the first milliseconds to seconds in CD8+ T cells lacking P2X4 and P2X7 channels, global Ca2+ responses over minutes were comparable between wild-type (WT) and knockout cells. However, the onset velocity was reduced in P2X4-deficient cells, and P2X4, as well as P2X7-deficient cells, exhibited a delayed response to reach a certain level of free cytosolic Ca2+ concentration ([Ca2+]i). NFAT-1 translocation, a crucial transcription factor in T cell activation, was also impaired in CD8+ T cells lacking P2X4 and P2X7. In addition, the expression of IFN-γ, a major pro-inflammatory cytokine produced by activated CD8+ T cells, and Nur77, a negative regulator of T cell activation, was significantly reduced 18h post-stimulation in the knockout cells. In line, the proliferation of T cells after 3 days was also impaired in the absence of P2X4 and P2X7 channels. In summary, the study demonstrates that purinergic signaling through P2X4 and P2X7 enhances initial Ca2+ events during CD8+ T cell activation and plays a crucial role in regulating downstream responses, including NFAT-1 translocation, cytokine expression, and proliferation on multiple timescales. These findings suggest that targeting purinergic signaling pathways may offer potential therapeutic interventions.


Assuntos
Linfócitos T CD8-Positivos , Transdução de Sinais , Citocinas
2.
Front Immunol ; 14: 1299435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274810

RESUMO

Ca2+ microdomains play a key role in intracellular signaling processes. For instance, they mediate the activation of T cells and, thus, the initial adaptive immune system. They are, however, also of utmost importance for activation of other cells, and a detailed understanding of the dynamics of these spatially localized Ca2+ signals is crucial for a better understanding of the underlying signaling processes. A typical approach to analyze Ca2+ microdomain dynamics is live cell fluorescence microscopy imaging. Experiments usually involve imaging a larger number of cells of different groups (for instance, wild type and knockout cells), followed by a time consuming image and data analysis. With DARTS, we present a modular Python pipeline for efficient Ca2+ microdomain analysis in live cell imaging data. DARTS (Deconvolution, Analysis, Registration, Tracking, and Shape normalization) provides state-of-the-art image postprocessing options like deep learning-based cell detection and tracking, spatio-temporal image deconvolution, and bleaching correction. An integrated automated Ca2+ microdomain detection offers direct access to global statistics like the number of microdomains for cell groups, corresponding signal intensity levels, and the temporal evolution of the measures. With a focus on bead stimulation experiments, DARTS provides a so-called dartboard projection analysis and visualization approach. A dartboard projection covers spatio-temporal normalization of the bead contact areas and cell shape normalization onto a circular template that enables aggregation of the spatiotemporal information of the microdomain detection results for the individual cells of the cell groups of interest. The dartboard visualization allows intuitive interpretation of the spatio-temporal microdomain dynamics at the group level. The application of DARTS is illustrated by three use cases in the context of the formation of initial Ca2+ microdomains after cell stimulation. DARTS is provided as an open-source solution and will be continuously extended upon the feedback of the community. Code available at: 10.5281/zenodo.10459243.


Assuntos
Boidae , Animais , Microscopia de Fluorescência , Linfócitos T/metabolismo
3.
FEBS J ; 288(23): 6769-6782, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34189846

RESUMO

Nudix hydrolase 9 (NUDT9) is a member of the nucleoside linked to another moiety X (NUDIX) protein superfamily, which hydrolyses a broad spectrum of organic pyrophosphates from metabolic processes. ADP-ribose (ADPR) has been the only known endogenous substrate accepted by NUDT9 so far. The Ca2+ -permeable transient receptor potential melastatin subfamily 2 (TRPM2) channel contains a homologous NUDT9-homology (NUDT9H) domain and is activated by ADPR. Sustained Ca2+ influx via ADPR-activated TRPM2 triggers apoptotic mechanisms. Thus, a precise regulation of cellular ADPR levels by NUDT9 is essential. A detailed characterization of the enzyme-substrate interaction would help to understand the high substrate specificity of NUDT9. Here, we analysed ligand binding to NUDT9 using a variety of biophysical techniques. We identified 2'-deoxy-ADPR as an additional substrate for NUDT9. Similar enzyme kinetics and binding affinities were determined for the two ligands. The high-affinity binding was preserved in NUDT9 containing the mutated NUDIX box derived from the human NUDT9H domain. NMR spectroscopy indicated that ADPR and 2'-deoxy-ADPR bind to the same binding site of NUDT9. Backbone resonance assignment and subsequent molecular docking allowed further characterization of the binding pocket. Substantial conformational changes of NUDT9 upon ligand binding were observed which might allow for the development of NUDT9-based ADPR fluorescence resonance energy transfer sensors that may help with the analysis of ADPR signalling processes in cells in the future.


Assuntos
Adenosina Difosfato Ribose/química , Simulação de Acoplamento Molecular , Conformação Proteica , Pirofosfatases/química , Adenosina Difosfato Ribose/metabolismo , Sítios de Ligação/genética , Ligação Competitiva , Humanos , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Mutação , Ligação Proteica , Pirofosfatases/genética , Pirofosfatases/metabolismo , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Difração de Raios X
4.
Sci Signal ; 14(675)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758062

RESUMO

NAADP-evoked Ca2+ release through type 1 ryanodine receptors (RYR1) is a major mechanism underlying the earliest signals in T cell activation, which are the formation of Ca2+ microdomains. In our characterization of the molecular machinery underlying NAADP action, we identified an NAADP-binding protein, called hematological and neurological expressed 1-like protein (HN1L) [also known as Jupiter microtubule-associated homolog 2 (JPT2)]. Gene deletion of Hn1l/Jpt2 in human Jurkat and primary rat T cells resulted in decreased numbers of initial Ca2+ microdomains and delayed the onset and decreased the amplitude of global Ca2+ signaling. Photoaffinity labeling demonstrated direct binding of NAADP to recombinant HN1L/JPT2. T cell receptor/CD3-dependent coprecipitation of HN1L/JPT2 with RYRs and colocalization of these proteins suggest that HN1L/JPT2 connects NAADP formation with the activation of RYR channels within the first seconds of T cell activation. Thus, HN1L/JPT2 enables NAADP to activate Ca2+ release from the endoplasmic reticulum through RYR.


Assuntos
Cálcio/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , NADP/análogos & derivados , Animais , Complexo CD3/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Proteínas Associadas aos Microtúbulos/genética , NADP/metabolismo , Ligação Proteica , Ratos , Receptores de Antígenos de Linfócitos T/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Linfócitos T/metabolismo
5.
Sci Signal ; 14(709): eabe3800, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784249

RESUMO

The formation of Ca2+ microdomains during T cell activation is initiated by the production of nicotinic acid adenine dinucleotide phosphate (NAADP) from its reduced form NAADPH. The reverse reaction­NAADP to NAADPH­is catalyzed by glucose 6-phosphate dehydrogenase (G6PD). Here, we identified NADPH oxidases NOX and DUOX as NAADP-forming enzymes that convert NAADPH to NAADP under physiological conditions in vitro. T cells express NOX1, NOX2, and, to a minor extent, DUOX1 and DUOX2. Local and global Ca2+ signaling were decreased in mouse T cells with double knockout of Duoxa1 and Duoxa2 but not with knockout of Nox1 or Nox2. Ca2+ microdomains in the first 15 s upon T cell activation were significantly decreased in Duox2−/− but not in Duox1−/− T cells, whereas both DUOX1 and DUOX2 were required for global Ca2+ signaling between 4 and 12 min after stimulation. Our findings suggest that a DUOX2- and G6PD-catalyzed redox cycle rapidly produces and degrades NAADP through NAADPH as an inactive intermediate.


Assuntos
Sinalização do Cálcio , Oxidases Duais , Ativação Linfocitária , NADPH Oxidases , NADP/biossíntese , Linfócitos T , Animais , Oxidases Duais/genética , Células HEK293 , Humanos , Células Jurkat , Camundongos Knockout , NADP/análogos & derivados , NADPH Oxidases/genética , Linfócitos T/enzimologia
6.
Front Immunol ; 11: 559576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101277

RESUMO

Natural killer (NK) cells are an important component of the innate immune system for the control of intracellular pathogens and cancer cells. NK cells demonstrate heterogeneous expression of inhibitory surface receptors. Signaling through these various receptors during NK cell development promotes functionality, referred to as NK cell education. Here we investigated the impact of education on NK cell metabolism through functional assessment of critical metabolic pathways and calcium signaling. Educated NK cells had an increased uptake of the metabolic substrates 2-NBDG, a fluorescent glucose analog, and BODIPY FL C16, a fluorescent palmitate, compared to uneducated NK cells. Comparison of NK cells educated via KIRs or NKG2A showed that NKG2A-educated NK cells were the main contributor to these differences in uptake of metabolites, and that NKG2A-educated NK cells were functionally more resilient in response to metabolic blockade of oxidative phosphorylation. Furthermore, NKG2A-educated NK cells exhibited higher peak calcium concentration following stimulation, indicating stronger signaling events taking place in these educated NK cells. These results demonstrate that cellular metabolism plays an important role in the functional differences observed between educated and uneducated NK cells, and show that NKG2A-educated NK cells remain more functionally competent than KIR-educated NK cells when oxidative phosphorylation is restricted. Understanding metabolic programming during NK cell education may unveil future targets to manipulate NK cell function for use in clinical settings, such as cancer therapies.


Assuntos
Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores KIR/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , Sinalização do Cálcio , Diferenciação Celular , Estudos de Coortes , Desoxiglucose/análogos & derivados , Glicólise , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células K562 , Fosforilação Oxidativa
7.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1162-1170, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30584900

RESUMO

TRPM2 is a non-selective, Ca2+-permeable cation channel, which plays a role in cell death but also contributes to diverse immune cell functions. In addition, TRPM2 contributes to the control of body temperature and is involved in perception of non-noxious heat and thermotaxis. TRPM2 is regulated by many factors including Ca2+, ADPR, 2'-deoxy-ADPR, Ca2+-CaM, and temperature. However, the molecular basis for the temperature sensitivity of TRPM2 as well as the interplay between the regulatory factors is still not understood. Here we identify a novel CaM-binding site in the unique NudT9H domain of TRPM2. Using a multipronged biophysical approach we show that binding of Ca2+-CaM to this site occurs upon partial unfolding at temperatures >35 °C and prevents further thermal destabilization. In combination with patch-clamp measurements of full-length TRPM2 our results suggest a role of this CaM-binding site in the temperature sensitivity of TRPM2. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Assuntos
Temperatura Alta , Canais de Cátion TRPM/química , Motivos de Aminoácidos , Células HEK293 , Humanos , Domínios Proteicos , Estabilidade Proteica , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA