Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Muscle Nerve ; 68(5): 743-749, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676114

RESUMO

INTRODUCTION/AIMS: Research has proven that epidermal and transcutaneous stimulation can identify the function of Aß and Aδ fibers (i.e., in diabetes) individually using different electrodes. In this study we aimed to determine the stability of perception thresholds when using such electrodes. METHODS: Twenty healthy volunteers participated in this study. The perception threshold of Aß fibers (patch electrode) and Aδ fibers (pin electrode) was estimated 30 times during a period of 60 minutes. A threshold was established every other minute, alternating between the two electrodes. The stimulus duration was 1 millisecond and the interstimulus interval was 1.5 to 2.5 seconds. Linear regressions of the perception threshold as a function of time were performed. The slopes were used as an estimate of habituation and were compared between the electrodes. RESULTS: The slope was significantly larger when assessed by the pin electrode (median: 0.020 [0.009 to 0.030] mA/trial) than when assessed by the patch electrode (median: 0.005 [0.001 to 0.018] mA/trial) (P = .017, paired t test). During the session, total increases in perception threshold of approximately 55% and 1% were seen for the pin and patch electrodes, respectively. DISCUSSION: The two fiber types assessed showed significant perception threshold increases. The higher slope of the pin electrode indicated that the Aδ fibers were more prone to habituation than the Aß fibers, and that habituation should be considered during prolonged experiments. This assessment is valuable for future research on nerve fiber function using the technique for long session experiments.

2.
Muscle Nerve ; 68(3): 308-315, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37382347

RESUMO

INTRODUCTION/AIMS: The axon-reflex flare response is a reliable method for functional assessment of small fibers in diabetic peripheral neuropathy (DPN), but broad adoption is limited by the time requirement. The aims of this study were to (1) assess diagnostic performance and optimize time required for assessing the histamine-induced flare response and (2) associate with established parameters. METHODS: A total of 60 participants with type 1 diabetes with (n = 33) or without (n = 27) DPN participated. The participants underwent quantitative sensory testing (QST), corneal confocal microscopy (CCM), and flare intensity and area size assessments by laser-Doppler imaging (FLPI) following an epidermal skin-prick application of histamine. The flare parameters were evaluated each minute for 15 min, and the diagnostic performance compared to QST and CCM were assessed using area under the curve (AUC). Minimum time-requirements until differentiation and to achieve results comparable with a full examination were assessed. RESULTS: Flare area size had better diagnostic performance compared with CCM (AUC 0.88 vs. 0.77, p < 0.01) and QST (AUC 0.91 vs. 0.81, p = 0.02) than mean flare intensity, and could distinguish people with and without DPN after 4 min compared to after 6 min (both p < 0.01). Flare area size achieved a diagnostic performance comparable to a full examination after 6 and 7 min (CCM and QST respectively, p > 0.05), while mean flare intensity achieved it after 5 and 8 min (CCM and QST respectively, p > 0.05). DISCUSSION: The flare area size can be evaluated 6-7 min after histamine-application, which increases diagnostic performance compared to mean flare intensity.


Assuntos
Diabetes Mellitus Tipo 1 , Histamina , Humanos , Histamina/farmacologia , Fibras Nervosas/fisiologia , Axônios , Reflexo
3.
J Neurophysiol ; 127(3): 651-659, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020531

RESUMO

Heat/capsaicin sensitization and electrical high-frequency stimulation (HFS) are well-known models of secondary hyperalgesia, a phenomenon related to chronic pain conditions. This study investigated whether priming with heat/capsaicin would facilitate hyperalgesia to HFS in healthy subjects. Heat/capsaicin priming consisted of a 45°C heat stimulation for 5 min followed by a topical capsaicin patch (4 × 4 cm) for 30 min on the volar forearm of 20 subjects. HFS (100 Hz, 5 times 1 s, minimum 1.5 mA) was subsequently delivered through a transcutaneous pin electrode approximately 1.5 cm proximal to the heat/capsaicin application. Two sessions were applied in a crossover design; traditional HFS (HFS) and heat/capsaicin sensitization followed by HFS (HFS + HEAT/CAPS). Heat pain threshold (HPT), mechanical pain sensitivity (MPS), and superficial blood perfusion were assessed at baseline, after capsaicin removal, and up to 40 min after HFS. MPS was assessed with pin-prick stimulation (128 mN and 256 mN) in the area adjacent to both HFS and heat/capsaicin, distal but adjacent to heat/capsaicin and in a distal control area. HPT was assessed in the area of heat/capsaicin. Higher sensitivity to 128 mN pin-prick stimulation (difference from baseline and control area) was observed in the HFS + HEAT/CAPS session than in the HFS session 20 and 30 min after HFS. Furthermore, sensitivity was increased after HFS + HEAT/CAPS compared with after heat/capsaicin in the area adjacent to both paradigms, but not in the area distal to heat/capsaicin. Results indicate that heat/capsaicin causes priming of the central and peripheral nervous system, which facilitates secondary mechanical hyperalgesia to HFS.NEW & NOTEWORTHY High-frequency electrical stimulation (HFS) and heat/capsaicin sensitization are well-known models of secondary hyperalgesia. The results from the current study indicate that increased sensitivity to 128 mN pin-prick stimulation can be obtained when HFS is delivered following an already established heightened central hyperexcitability provoked by heat/capsaicin sensitization.


Assuntos
Capsaicina , Hiperalgesia , Capsaicina/farmacologia , Estimulação Elétrica , Temperatura Alta , Humanos , Dor , Limiar da Dor
4.
Br J Clin Pharmacol ; 88(12): 5307-5316, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35776835

RESUMO

AIMS: The aim of this study was to investigate the effects of tapentadol and oxycodone using the nociceptive withdrawal reflex and sensory evoked potentials. METHODS: Twenty-one healthy volunteers completed a cross-over trial with oxycodone (10 mg), tapentadol (50 mg) extended-release tablets, or placebo treatment administered orally BID for 14 days. Electrical stimulations were delivered on the plantar side of the foot to evoke a nociceptive withdrawal reflex at baseline and post-interventions. Electromyography, recorded at tibialis anterior, and electroencephalography were recorded for analysis of: number of reflexes, latencies, and area under the curve of the nociceptive withdrawal reflex as well as latencies, amplitudes and dipole sources of the sensory-evoked potential. RESULTS: Tapentadol decreased the odds ratio of eliciting nociceptive withdrawal reflex by -0.89 (P = .001, 95% confidence interval [CI] -1.46, -0.32), whereas oxycodone increased the latency of the N1 component of the sensory-evoked potential at the vertex by 12.5 ms (P = .003, 95% CI 3.35, 21.69). Dipole sources revealed that the anterior cingulate component moved caudally for all three interventions (all P < .02), and the insula components moved caudally in both the oxycodone and tapentadol arms (all P < .03). CONCLUSION: A decrease in the number of nociceptive withdrawal reflex was observed during tapentadol treatment, possibly relating to the noradrenaline reuptake inhibition effects on the spinal cord. Both oxycodone and tapentadol affected cortical measures possible due to µ-opioid receptor agonistic effects evident in the dipole sources, with the strongest effect being mediated by oxycodone. These findings could support the dual effect analgesic mechanisms of tapentadol in humans as previously shown in preclinical studies.


Assuntos
Oxicodona , Fenóis , Humanos , Tapentadol , Oxicodona/efeitos adversos , Fenóis/farmacologia , Fenóis/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Medula Espinal , Encéfalo , Eletrofisiologia , Método Duplo-Cego
5.
J Neurophysiol ; 124(3): 883-894, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783585

RESUMO

The excitability of large nerve fibers is reduced when their membrane potential is slowly depolarizing, i.e., the fibers display accommodation. The aim of this study was to assess accommodation in small (mainly Aδ) and large (Aß) cutaneous sensory nerve fibers using the perception threshold tracking (PTT) technique. Linearly increasing ramp currents (1 ms-200 ms) were used to assess the excitability of the nerve fibers by cutaneous electrical stimulation. To investigate the PPT technique's ability to preferentially activate different fiber types, topical application of lidocaine/prilocaine (EMLA) or a placebo cream was applied. By means of computational modeling, the underlying mechanisms governing the perception threshold in the two fiber types was studied. The axon models included the voltage-gated ion channels: transient TTX-sensitive sodium current, transient TTX-resistant sodium current (NaTTXr), persistent sodium current, delayed rectifier potassium channel (KDr), slow potassium channel, and hyperpolarization-activated current. Large fibers displayed accommodation, whereas small fibers did not display accommodation (P < 0.05). For the pin electrode, a significant interaction was observed between cream (EMLA or placebo) and pulse duration (P < 0.05); for the patch electrode, there was no significant interaction between cream and duration, which supports the pin electrode's preferential activation of small fibers. The results from the computational model suggested that differences in accommodation between the two fiber types may originate from selective expression of voltage-gated ion channels, particularly the transient NaTTXr and/or KDr. The PTT technique could assess the excitability changes during accommodation in different nerve fibers. Therefore, the PTT technique may be a useful tool for studying excitability in nerve fibers in both healthy and pathological conditions.NEW & NOTEWORTHY When large nerve fibers are stimulated by long, slowly increasing electrical pulses, interactive mechanisms counteract the stimulation, which is called accommodation. The perception threshold tracking technique was able to assess accommodation in both small and large fibers. The novelty of this study is that large fibers displayed accommodation, whereas small fibers did not. Additionally, the difference in accommodation between the fiber could be linked to expression of voltage-gated ion channels by means of computational modeling.


Assuntos
Potenciais da Membrana/fisiologia , Fibras Nervosas/fisiologia , Limiar Sensorial/fisiologia , Percepção do Tato/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Adulto , Estimulação Elétrica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Adulto Jovem
6.
Biophys J ; 117(2): 281-295, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31255293

RESUMO

Small-surface-area electrodes have successfully been used to preferentially activate cutaneous nociceptors, unlike conventional large area-electrodes, which preferentially activate large non-nociceptor fibers. Assessments of the strength-duration relationship, threshold electrotonus, and slowly increasing pulse forms have displayed different perception thresholds between large and small surface electrodes, which may indicate different excitability properties of the activated cutaneous nerves. In this study, the origin of the differences in perception thresholds between the two electrodes was investigated. It was hypothesized that different perception thresholds could be explained by the varying distributions of voltage-gated ion channels and by morphological differences between peripheral nerve endings of small and large fibers. A two-part computational model was developed to study activation of peripheral nerve fibers by different cutaneous electrodes. The first part of the model was a finite-element model, which calculated the extracellular field delivered by the cutaneous electrodes. The second part of the model was a detailed multicompartment model of an Aδ-axon as well as an Aß-axon. The axon models included a wide range of voltage-gated ion channels: NaTTXs, NaTTXr, Nap, Kdr, KM, KA, and HCN channel. The computational model reproduced the experimentally assessed perception thresholds for the three protocols, the strength-duration relationship, the threshold electrotonus, and the slowly increasing pulse forms. The results support the hypothesis that voltage-gated ion channel distributions and morphology differences between small and large fibers were sufficient to explain the difference in perception thresholds between the two electrodes. In conclusion, assessments of perception thresholds using the three protocols may be an indirect measurement of the membrane excitability, and computational models may have the possibility to link voltage-gated ion channel activation to perception threshold measurements.


Assuntos
Simulação por Computador , Canais Iônicos/metabolismo , Potenciais de Ação/fisiologia , Axônios/metabolismo , Estimulação Elétrica , Eletricidade , Eletrodos , Ativação do Canal Iônico , Modelos Neurológicos , Fibras Nervosas/fisiologia , Pele
7.
J Neurophysiol ; 122(4): 1745-1752, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461369

RESUMO

Electrical stimulation is widely used in pain research and profiling, but current technologies lack selectivity toward small sensory fibers. Pin electrodes deliver high current density in upper skin layers, and it has been proposed that slowly rising exponential pulses can elevate large-fiber activation threshold and thereby increase preferential small-fiber activation. Optimal stimulation parameters for the combined pin electrode and exponential pulse stimulation have so far not been established, which is the aim of this study. Perception thresholds were compared between pin and patch electrodes using single 1- to 100-ms exponential and rectangular pulses. Stimulus-response functions were evaluated for both pulse shapes delivered as single pulses and pulse trains of 10 Hz using intensities from 0.1 to 20 times perception threshold. Perception thresholds (mA) decreased when duration was increased for both electrodes with rectangular pulses and the pin electrode with exponential pulses. For the patch electrode, perception thresholds for exponential pulses decreased for durations ≤10 ms but increased for durations ≥15 ms, indicating accommodation of large fibers. Stimulus-response curves for single pulses were similar for the two pulse shapes. For pulse trains, the slope of the curve was higher for rectangular pulses. Maximal large-fiber accommodation to exponential pulses was observed for 100-ms pulses, indicating that 100-ms exponential pulses should be applied for preferential small-fiber activation. Intensity of 10 times perception threshold was sufficient to cause maximal pain ratings. The developed methodology may open new opportunities for using electrical stimulation paradigms for small-fiber stimulation and diagnostics.NEW & NOTEWORTHY Selective activation of small cutaneous nerve fibers is pivotal for investigations of the pain system. The present study demonstrated that patch electrode perception thresholds increase with increased duration of exponential currents from 20 to 100 ms. This is likely caused by large-fiber accommodation, which can be utilized to activate small fibers preferentially through small-diameter pin electrodes. This finding may be utilized in studies of fundamental pain mechanisms and, for example, in small-fiber neuropathy.


Assuntos
Axônios/fisiologia , Limiar Sensorial , Estimulação Elétrica Nervosa Transcutânea/métodos , Adulto , Feminino , Humanos , Masculino , Neurônios Aferentes/fisiologia , Percepção da Dor , Neuropatia de Pequenas Fibras/terapia , Estimulação Elétrica Nervosa Transcutânea/instrumentação
8.
BMC Neurosci ; 20(1): 48, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521103

RESUMO

BACKGROUND: Electrical stimulation is widely used in experimental pain research but it lacks selectivity towards small nociceptive fibers. When using standard surface patch electrodes and rectangular pulses, large fibers are activated at a lower threshold than small fibers. Pin electrodes have been designed for overcoming this problem by providing a higher current density in the upper epidermis where the small nociceptive fibers mainly terminate. At perception threshold level, pin electrode stimuli are rather selectively activating small nerve fibers and are perceived as painful, but for high current intensity, which is usually needed to evoke sufficient pain levels, large fibers are likely co-activated. Long duration current has been shown to elevate the threshold of large fibers by the mechanism of accommodation. However, it remains unclear whether the mechanism of accommodation in large fibers can be utilized to activate small fibers even more selectively by combining pin electrode stimulation with a long duration pulse. RESULTS: In this study, perception thresholds were determined for a patch- and a pin electrode for different pulse shapes of long duration. The perception threshold ratio between the two different electrodes was calculated to estimate the ability of the pulse shapes to preferentially activate small fibers. The perception threshold ratios were compared between stimulation pulses of 5- and 50 ms durations and shapes of: exponential increase, linear increase, bounded exponential, and rectangular. Qualitative pain perception was evaluated for all pulse shapes delivered at 10 times perception threshold. The results showed a higher perception threshold ratio for long duration 50 ms pulses than for 5 ms pulses. The highest perception threshold ratio was found for the 50 ms, bounded exponential pulse shape. Results furthermore revealed different strength-duration relation between the bounded exponential- and rectangular pulse shapes. Pin electrode stimulation at high intensity was mainly described as "stabbing", "shooting", and "sharp". CONCLUSION: These results indicate that long duration pulses with a bounded exponential increase preferentially activate the small nociceptive fibers with a pin electrode and concurrently cause elevated threshold of large non-nociceptive fibers with patch electrodes.


Assuntos
Estimulação Elétrica/métodos , Fibras Nervosas/fisiologia , Limiar Sensorial/fisiologia , Pele/inervação , Adolescente , Adulto , Idoso , Eletrodos/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
9.
BMC Neurosci ; 20(1): 47, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481024

RESUMO

BACKGROUND: There is a need for new approaches to increase the knowledge of the membrane excitability of small nerve fibers both in healthy subjects, as well as during pathological conditions. Our research group has previously developed the perception threshold tracking technique to indirectly assess the membrane properties of peripheral small nerve fibers. In the current study, a new approach for studying membrane excitability by cooling small fibers, simultaneously with applying a slowly increasing electrical stimulation current, is evaluated. The first objective was to examine whether altered excitability during cooling could be detected by the perception threshold tracking technique. The second objective was to computationally model the underlying ionic current that could be responsible for cold induced alteration of small fiber excitability. The third objective was to evaluate whether computational modelling of cooling and electrical simulation can be used to generate hypotheses of ionic current changes in small fiber neuropathy. RESULTS: The excitability of the small fibers was assessed by the perception threshold tracking technique for the two temperature conditions, 20 °C and 32 °C. A detailed multi-compartment model was developed, including the ionic currents: NaTTXs, NaTTXr, NaP, KDr, KM, KLeak, KA, and Na/K-ATPase. The perception thresholds for the two long duration pulses (50 and 100 ms) were reduced when the skin temperature was lowered from 32 to 20 °C (p < 0.001). However, no significant effects were observed for the shorter durations (1 ms, p = 0.116; 5 ms p = 0.079, rmANOVA, Sidak). The computational model predicted that the reduction in the perception thresholds related to long duration pulses may originate from a reduction of the KLeak channel and the Na/K-ATPase. For short durations, the effect cancels out due to a reduction of the transient TTX resistant sodium current (Nav1.8). Additionally, the result from the computational model indicated that cooling simultaneously with electrical stimulation, may increase the knowledge regarding pathological alterations of ionic currents. CONCLUSION: Cooling may alter the ionic current during electrical stimulation and thereby provide additional information regarding membrane excitability of small fibers in healthy subjects and potentially also during pathological conditions.


Assuntos
Temperatura Baixa , Fibras Nervosas/fisiologia , Limiar Sensorial/fisiologia , Pele/inervação , Potenciais de Ação/fisiologia , Estimulação Elétrica , Feminino , Humanos , Masculino , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Fatores de Tempo , Adulto Jovem
10.
Exp Brain Res ; 234(9): 2479-89, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27093867

RESUMO

Spinal nociceptive long-term potentiation (LTP) can be induced by high- or low-frequency conditioning electrical stimulation (CES) in rodent preparations in vitro. However, there is still sparse information on the effect of different conditioning frequencies inducing LTP-like pain amplification in humans. In this study, we tested two other paradigms aiming to explore the CES frequency effect inducing pain amplification in healthy humans. Cutaneous LTP-like pain amplification induced by three different paradigms (10, 100, and 200 Hz CES) was assessed in fifteen volunteers in a crossover design. Perceptual intensity ratings to single electrical stimulation at the conditioned site and to mechanical stimuli (pinprick and light stroking) in the immediate vicinity were recorded; superficial blood flow was also measured. The short form of the McGill Pain Questionnaire (SF-MPQ) was used for characterizing the perception induced by CES. Compared with the control session, pain perception to pinprick stimuli and area of allodynia significantly increased after all three CES paradigms. In the 10 and 200 Hz sessions, the superficial blood flow 10 min after CES was significantly higher than in the control session reaching a plateau after 20 and 10 min, respectively; for the 100 Hz paradigm, a stable level was found without significant differences compared with CES and control sessions. 10 Hz CES caused a lower SF-MPQ score than 100 Hz. High-frequency (200 Hz) and low-frequency (10 Hz) paradigms can induce heterotopic pain amplification similar to the traditional 100 Hz paradigm. The 10 Hz paradigm can be an appealing alternative paradigm in future studies due to its specific association with low-level discharging of C-fibers during inflammation.


Assuntos
Condicionamento Psicológico/fisiologia , Hiperalgesia/fisiopatologia , Potenciação de Longa Duração/fisiologia , Limiar da Dor/fisiologia , Dor/fisiopatologia , Adulto , Estimulação Elétrica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos
11.
Neuromodulation ; 19(6): 587-96, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27353079

RESUMO

BACKGROUND: Peripheral nerve field stimulation (PNFS) is a potential treatment for chronic low-back pain. Pain relief using PNFS is dependent on activation of non-nociceptive Aß-fibers. However, PNFS may also activate muscles, causing twitches and discomfort. In this study, we developed a mathematical model, to investigate the activation of sensory and motor nerves, as well as direct muscle fiber activation. METHODS: The extracellular field was estimated using a finite element model based on the geometry of CT scanned lumbar vertebrae. The electrode was modeled as being implanted to a depth of 10-15 mm. Three implant directions were modeled; horizontally, vertically, and diagonally. Both single electrode and "between-lead" stimulation between contralateral electrodes were modeled. The extracellular field was combined with models of sensory Aß-nerves, motor neurons and muscle fibers to estimate their activation thresholds. RESULTS: The model showed that sensory Aß fibers could be activated with thresholds down to 0.563 V, and the lowest threshold for motor nerve activation was 7.19 V using between-lead stimulation with the cathode located closest to the nerves. All thresholds for direct muscle activation were above 500 V. CONCLUSIONS: The results suggest that direct muscle activation does not occur during PNFS, and concomitant motor and sensory nerve fiber activation are only likely to occur when using between-lead configuration. Thus, it may be relevant to investigate the location of the innervation zone of the low-back muscles prior to electrode implantation to avoid muscle activation.


Assuntos
Estimulação Elétrica/métodos , Músculo Esquelético/fisiologia , Fibras Nervosas/fisiologia , Animais , Eletrodos Implantados , Humanos , Limiar Sensorial/fisiologia , Estimulação Elétrica Nervosa Transcutânea
12.
Neuromodulation ; 19(3): 311-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26586248

RESUMO

INTRODUCTION AND AIM: Low back pain is one of the indications for using peripheral nerve field stimulation (PNFS). However, the effect of PNFS varies between patients; several stimulation parameters have not been investigated in depth, such as orientation of the nerve fiber in relation to the electrode. While placing the electrode parallel to the nerve fiber may give lower activation thresholds, anodal blocking may occur when the propagating action potential passes an anode. METHODS: A finite element model was used to simulate the extracellular potential during PNFS. This was combined with an active cable model of Aß and Aδ nerve fibers. It was investigated how the angle between the nerve fiber and electrode affected the nerve activation and whether anodal blocking could occur. Finally, the area of paresthesia was estimated and compared with any concomitant Aδ fiber activation. RESULTS: The lowest threshold was found when nerve and electrode were in parallel, and that anodal blocking did not appear to occur during PNFS. The activation of Aß fibers was within therapeutic range (<10V) of PNFS; however, within this range, Aδ fiber activation also may occur. The combined area of activated Aß fibers (paresthesia) was at least two times larger than Aδ fibers for similar stimulation intensities. CONCLUSION: No evidence of anodal blocking was observed in this PNFS model. The thresholds were lowest when the nerves and electrodes were parallel; thus, it may be relevant to investigate the overall position of the target nerve fibers prior to electrode placement.


Assuntos
Terapia por Estimulação Elétrica/métodos , Dor Lombar/terapia , Modelos Biológicos , Fibras Nervosas Mielinizadas/fisiologia , Eletrodos Implantados , Humanos
13.
Neuromodulation ; 17(3): 218-25; discussion 225, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24612321

RESUMO

OBJECTIVES: The lower back is the most common location of pain experienced by one-fifth of the European population reporting chronic pain. A peripheral nerve field stimulation system, which involves electrodes implanted subcutaneously in the painful area, has been shown to be efficacious for low back pain. Moreover, the predominant analgesic mechanism of action is thought to be via activation of peripheral Aß fibers. Unfortunately, electrical stimulation also might coactivate Aδ fibers, causing pain or unpleasantness itself. The aim of this study was to investigate at which implant depth Aß-fiber stimulation is maximized, and Aδ-fiber minimized, which in turn should lead to therapy optimization. MATERIALS AND METHODS: A finite element model was used to estimate the electrical potential generated by a bipolar single-lead electrode implanted in the subcutaneous adipose tissue at depths of 5 mm to 30 mm below the skin surface. The model includes low back tissue; the epidermis, dermis, adipose, and muscle layers, and nerve fibers, which were programmed to branch randomly in the model in a fiber type-specific manner. Likewise, activation thresholds were specific to Aß- and Aδ-fiber types and were estimated using a passive cable model. RESULTS: The stimulus-response functions showed that the skin area covered by Aß-fiber activation was larger than the area covered by Aδ-fiber activation at all depths and all intensities. The skin area covered by Aδ-fiber activation was largest when the electrode was modeled to have a superficial location (5 mm below the skin surface), while the skin area covered by Aß-fiber activation was largest at lower depths. CONCLUSIONS: The present mathematical model predicts an optimal implantation depth of 10 to 15 mm below the skin surface to achieve activation of the greatest area of Aß fibers and the smallest area of Aδ fibers. This finding may act as a guide for peripheral nerve field stimulation implant depth to treat low back pain.


Assuntos
Simulação por Computador , Terapia por Estimulação Elétrica , Dor Lombar/terapia , Modelos Neurológicos , Fibras Nervosas Mielinizadas/fisiologia , Nervos Espinhais/fisiopatologia , Potenciais de Ação , Condutividade Elétrica , Terapia por Estimulação Elétrica/efeitos adversos , Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados , Humanos , Fibras Nervosas Mielinizadas/classificação , Condução Nervosa , Dor/etiologia , Pele/inervação , Processos Estocásticos , Gordura Subcutânea , Tela Subcutânea
14.
BMC Neurosci ; 14: 116, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24103294

RESUMO

BACKGROUND: Human nociceptive withdrawal reflexes (NWR) can be evoked by electrical stimulation applied to the sole of the foot. However, elicitation of NWRs is highly site dependent, and NWRs are especially difficult to elicit at the heel. The aim of the present study was to investigate potential peripheral mechanisms for any site dependent differences in reflex thresholds. RESULTS: The first part of the study investigated the neural innervation in different sites of the sole of the foot using two different staining techniques. 1) Staining for the Nav1.7 antigen (small nociceptive fibers) and 2) the Sihler whole nerve technique (myelinated part of the nerve). No differences in innervation densities were found across the sole of the foot using the two staining techniques: Nav1.7 immunochemistry (small nociceptive fibers (1-way ANOVA, NS)) and the Sihler's method (myelinated nerve fibers (1-way ANOVA, NS)). However, the results indicate that there are no nociceptive intraepidermal nerve fibers (IENFs) innervating the heel.Secondly, mathematical modeling was used to investigate to what degree differences in skin thicknesses affect the activation thresholds of Aδ and Aß fibers in the sole of the foot. The modeling comprised finite element analysis of the volume conduction combined with a passive model of the activation of branching cutaneous nerve fibers. The model included three different sites in the sole of the foot (forefoot, arch and heel) and three different electrode sizes (diameters: 9.1, 12.9, and 18.3 mm). For each of the 9 combinations of site and electrode size, a total of 3000 Aß fibers and 300 Aδ fibers was modeled. The computer simulation of the effects of skin thicknesses and innervation densities on thresholds of modeled Aδ and Aß fibers did not reveal differences in pain and perception thresholds across the foot sole as have been observed experimentally. Instead a lack of IENFs at the heel decreased the electrical activation thresholds compared to models including IENFs. CONCLUSIONS: The nerve staining and modeling results do not explain differences in NWR thresholds across the sole of the foot which may suggest that central mechanisms contribute to variation in NWR excitability across the sole of the foot.


Assuntos
Pé/inervação , Fibras Nervosas Mielinizadas/ultraestrutura , Limiar da Dor/fisiologia , Estimulação Elétrica , Análise de Elementos Finitos , Humanos , Reflexo/fisiologia , Coloração pela Prata
15.
Front Pain Res (Lausanne) ; 4: 1191786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265942

RESUMO

Background: A pressure algometer is a valuable tool for assessing the mechanical nociceptive threshold (MNT) in clinical pain studies. Recent research has turned to large animal models of pain because of the closer anatomy and physiology to humans. Although the reliability and usefulness of the MNT have been extensively validated in humans, similar data from large animals is still sparse. Objective: Therefore, the aim of the current study was to evaluate the reliability (within- and between-session) of MNT in the forelimb of pigs using a pressure algometer. Methods: Nine animals were used (23-40 kg), and MNTs were measured at both the right and left limbs at three different sessions, with three repetitions per session. The intraclass correlation coefficient (ICC) was used as a metric for relative reliability. The standard error of measurement (SEM) and coefficient of variation (CV) was used to assess absolute reliability. Systematic bias was also evaluated. Results: The average ICC was found to be 0.71 and 0.45 for the between-session and within-session, respectively. CV ranged from 17.9% to 20.5%, with a grand average of 19.1%. The grand average SEM was 249.5 kPa (16.6%). No systematic differences were found for the MNT between sessions, which suggests that there was no habituation to the stimulus. Conclusion: The reliability indices obtained in this study are comparable to results obtained in other species or anatomical regions and substantiate the use of the pressure algometer as a valuable tool to investigate the nociceptive system in pigs and translation to the human nociceptive withdrawal reflex.

16.
Acta Diabetol ; 60(6): 777-785, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36881186

RESUMO

AIMS: To investigate the co-existence of diabetic peripheral neuropathy (DPN), painful diabetic peripheral neuropathy (PDPN), and cardiac autonomic neuropathy (CAN) and to establish a model to predict CAN based on peripheral measurements. METHODS: Eighty participants (20 type 1 diabetes (T1DM) + PDPN, 20 T1DM + DPN, 20 T1DM-DPN (without DPN), and 20 healthy controls (HC)) underwent quantitative sensory testing, cardiac autonomic reflex tests (CARTs), and conventional nerve conduction. CAN was defined as ≥ 2 abnormal CARTs. After the initial analysis, the participants with diabetes were re-grouped based on the presence or absence of small (SFN) and large fibre neuropathy (LFN), respectively. A prediction model for CAN was made using logistic regression with backward elimination. RESULTS: CAN was most prevalent in T1DM + PDPN (50%), followed by T1DM + DPN (25%) and T1DM-DPN and HC (0%). The differences in prevalence of CAN between T1DM + PDPN and T1DM-DPN/HC were significant (p < 0.001). When re-grouping, 58% had CAN in the SFN group and 55% in the LFN group, while no participants without either SFN or LFN had CAN. The prediction model had a sensitivity of 64%, a specificity of 67%, a positive predictive value of 30%, and a negative predictive value of 90%. CONCLUSION: This study suggests that CAN predominantly co-exists with concomitant DPN.


Assuntos
Diabetes Mellitus Tipo 1 , Neuropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/epidemiologia , Neuropatias Diabéticas/etiologia , Dor/complicações , Condução Nervosa
17.
Scand J Pain ; 23(4): 729-734, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37596799

RESUMO

OBJECTIVES: Offset analgesia (OA) is the phenomenon where the perceived pain intensity to heat stimulation disproportionally decreases after a slight decrease in stimulation temperature. The neural mechanisms of OA are not fully understood, but it appears that both peripheral and central temporal filtering properties are involved. Chemotherapy with oxaliplatin often causes acute peripheral sensory neuropathy, and manifests primarily as a cold induced allodynia. The aim of this exploratory patient study was to investigate if OA was affected by the neurotoxic effects of adjuvant oxaliplatin treatment. METHODS: OA was assessed in 17 colon cancer patients during 12 cycles of adjuvant oxaliplatin treatment. The OA response was estimated as the decrease in pain intensity caused by a temperature decrease from 46 °C to 45 °C. Changes in the OA during the treatment period was estimated using a mixed linear model and corrected for multiple comparisons by Sidak's test. RESULTS: OA was increased significantly when assessed before the 2nd, 3rd, 5th, 6th, 9th, and 10th treatment cycle compared to the first (baseline) treatment (p<0.05). CONCLUSIONS: OA is generally decreased in persons suffering from chronic pain or peripheral neuropathy as compared to healthy controls. But in the present study, OA increased during chemotherapy with oxaliplatin. The underlying mechanism of this unexpected increase should be further explored.


Assuntos
Analgesia , Dor Crônica , Doenças do Sistema Nervoso Periférico , Humanos , Oxaliplatina/efeitos adversos , Estudos de Viabilidade , Manejo da Dor , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico
18.
Pain ; 164(4): 886-894, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130086

RESUMO

ABSTRACT: It remains unknown why some people with diabetes develop painful neuropathies while others experience no pain. This study aimed to validate a novel method for assessing the function of small sensory nerves in diabetes to further elucidate this phenomenon. The function of large and small nerves was assessed using a novel perception threshold tracking technique in 3 well-characterized groups (n = 60) with type 1 diabetes, namely, (1) painful diabetic peripheral neuropathy (T1DM + PDPN), (2) painless diabetic peripheral neuropathy (T1DM + DPN), and (3) no neuropathy (T1DM - DPN), and healthy controls (n = 20). Electrical currents with different shapes, duration, and intensities were applied by 2 different skin electrodes activating large and small fibers, respectively. The minimal current needed to activate the fibers were analyzed as the rheobase of the stimulus-response function. Nerve fiber selectivity was measured by accommodation properties of stimulated nerves. The rheobase of both fiber types were highest for T1DM + PDPN, followed by T1DM + DPN, T1DM - DPN, and healthy controls, indicating that the nerve properties are specific in individuals with diabetes and pain. There was an overall significant difference between the groups ( P < 0.01). The accommodation properties of stimulated fibers were different between the 2 electrodes ( P < 0.05) apart from in the group with T1DM + PDPN, where both electrodes stimulated nerves displaying properties similar to large fibers. Perception threshold tracking reveals differences in large and small nerve fiber function between the groups with and without diabetes, DPN, and pain. This indicates that the methods have potential applications in screening DPN and explore further the features differentiating painful from nonpainful DPN.


Assuntos
Diabetes Mellitus Tipo 1 , Neuropatias Diabéticas , Humanos , Neuropatias Diabéticas/diagnóstico , Diabetes Mellitus Tipo 1/complicações , Dor , Fibras Nervosas , Percepção
19.
J Diabetes Sci Technol ; : 19322968231157431, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36825610

RESUMO

AIM: An objective assessment of small nerve fibers is key to the early detection of diabetic peripheral neuropathy (DPN). This study investigates the diagnostic accuracy of a novel perception threshold tracking technique in detecting small nerve fiber damage. METHODS: Participants with type 1 diabetes (T1DM) without DPN (n = 20), with DPN (n = 20), with painful DPN (n = 20) and 20 healthy controls (HCs) underwent perception threshold tracking on the foot and corneal confocal microscopy. Diagnostic accuracy of perception threshold tracking compared to corneal confocal microscopy was analyzed using logistic regression. RESULTS: The rheobase, corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), and corneal nerve fiber length (CNFL) (all P < .001) differed between groups. The diagnostic accuracy of perception threshold tracking (rheobase) was excellent for identifying small nerve fiber damage, especially for CNFL with a sensitivity of 94%, specificity 94%, positive predictive value 97%, and negative predictive value 89%. There was a significant correlation between rheobase with CNFD, CNBD, CNFL, and Michigan Neuropathy Screening Instrument (all P < .001). CONCLUSION: Perception threshold tracking had a very high diagnostic agreement with corneal confocal microscopy for detecting small nerve fiber loss and may have clinical utility for assessing small nerve fiber damage and hence early DPN. CLINICAL TRIALS: NCT04078516.

20.
J Pain ; 23(7): 1167-1176, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35121142

RESUMO

Small nerve fibres are important when studying diabetic peripheral neuropathy (DPN) as they could be first affected. However, assessing their integrity and function adequately remains a major challenge. The aim of this study was to investigate the association between different degrees of DPN, the presence of neuropathic pain, and the intensity of the axon-reflex flare response provoked by epidermal histamine. Eighty adults were included and divided into 4 groups of 20 with type 1 diabetes and: painful DPN (T1DM+PDPN), non-painful DPN (T1DM+DPN), no DPN and no pain (T1DM-DPN), and 20 persons without diabetes or pain (HC). The vasomotor responses were captured by a Full-field Laser Speckle Perfusion Imager. The response was lowest in T1DM+DPN, followed by T1DM+PDPN, T1DM-DPN and HC. The response was significantly reduced in DPN (T1DM+DPN, T1DM+PDPN) compared with people without (T1DM-DPN, HC) (P < .001). The response was also attenuated in diabetes irrespective of the degree of DPN (T1DM+PDPN, T1DM+DPN, T1DM-DPN) (P < .001). There were no differences in the response between painful neuropathy (T1DM+PDPN) and painless DPN (T1DM+DPN) (P = .189). The method can distinguish between groups with and without diabetes and with and without DPN but cannot distinguish between groups with and without painful DPN. PERSPECTIVE: This study describes how diabetes attenuates the axon-reflex response, and how it is affected by neuropathy and pain clarifying previous findings. Furthermore, the study is the first to utilize histamine when evoking the response, thus providing a new and fast alternative for future studies into the pathophysiology of neuropathic pain.


Assuntos
Diabetes Mellitus Tipo 1 , Neuropatias Diabéticas , Neuralgia , Adulto , Axônios , Diabetes Mellitus Tipo 1/complicações , Histamina , Humanos , Neuralgia/etiologia , Reflexo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA