Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 615(7954): 934-938, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949187

RESUMO

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Assuntos
Microscopia Crioeletrônica , Complexo III da Cadeia de Transporte de Elétrons , Complexo II de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias , Membranas Mitocondriais , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/ultraestrutura , Mitocôndrias/química , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/ultraestrutura , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/ultraestrutura , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Evolução Molecular
2.
Nature ; 571(7765): 429-433, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292547

RESUMO

Balanced fusion and fission are key for the proper function and physiology of mitochondria1,2. Remodelling of the mitochondrial inner membrane is mediated by the dynamin-like protein mitochondrial genome maintenance 1 (Mgm1) in fungi or the related protein optic atrophy 1 (OPA1) in animals3-5. Mgm1 is required for the preservation of mitochondrial DNA in yeast6, whereas mutations in the OPA1 gene in humans are a common cause of autosomal dominant optic atrophy-a genetic disorder that affects the optic nerve7,8. Mgm1 and OPA1 are present in mitochondria as a membrane-integral long form and a short form that is soluble in the intermembrane space. Yeast strains that express temperature-sensitive mutants of Mgm19,10 or mammalian cells that lack OPA1 display fragmented mitochondria11,12, which suggests that Mgm1 and OPA1 have an important role in inner-membrane fusion. Consistently, only the mitochondrial outer membrane-not the inner membrane-fuses in the absence of functional Mgm113. Mgm1 and OPA1 have also been shown to maintain proper cristae architecture10,14; for example, OPA1 prevents the release of pro-apoptotic factors by tightening crista junctions15. Finally, the short form of OPA1 localizes to mitochondrial constriction sites, where it presumably promotes mitochondrial fission16. How Mgm1 and OPA1 perform their diverse functions in membrane fusion, scission and cristae organization is at present unknown. Here we present crystal and electron cryo-tomography structures of Mgm1 from Chaetomium thermophilum. Mgm1 consists of a GTPase (G) domain, a bundle signalling element domain, a stalk, and a paddle domain that contains a membrane-binding site. Biochemical and cell-based experiments demonstrate that the Mgm1 stalk mediates the assembly of bent tetramers into helical filaments. Electron cryo-tomography studies of Mgm1-decorated lipid tubes and fluorescence microscopy experiments on reconstituted membrane tubes indicate how the tetramers assemble on positively or negatively curved membranes. Our findings convey how Mgm1 and OPA1 filaments dynamically remodel the mitochondrial inner membrane.


Assuntos
Chaetomium/química , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Cristalografia por Raios X , Proteínas Fúngicas/ultraestrutura , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Galactosilceramidas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica
3.
Mol Microbiol ; 112(4): 1235-1252, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31339607

RESUMO

Apicomplexan parasites cause diseases such as malaria and toxoplasmosis. The apicomplexan mitochondrion shows striking differences from common model organisms, including fundamental processes such as mitochondrial translation. Despite evidence that mitochondrial translation is essential for parasite survival, it is largely understudied. Progress has been restricted by the absence of functional assays to detect apicomplexan mitochondrial translation, a lack of knowledge of proteins involved in the process and the inability to identify and detect mitoribosomes. We report the localization of 12 new mitochondrial proteins, including 6 putative mitoribosomal proteins. We demonstrate the integration of three mitoribosomal proteins in macromolecular complexes, and provide evidence suggesting these are apicomplexan mitoribosomal subunits, detected here for the first time. Finally, a new analytical pipeline detected defects in mitochondrial translation upon depletion of the small subunit protein 35 (TgmS35), while other mitochondrial functions remain unaffected. Our work lays a foundation for the study of apicomplexan mitochondrial translation.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Ribossomos Mitocondriais/metabolismo , Animais , Proteínas Mitocondriais/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Ribossomos/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasmose/parasitologia
4.
Proc Natl Acad Sci U S A ; 114(5): 992-997, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096380

RESUMO

We used electron cryotomography and subtomogram averaging to determine the in situ structures of mitochondrial ATP synthase dimers from two organisms belonging to the phylum euglenozoa: Trypanosoma brucei, a lethal human parasite, and Euglena gracilis, a photosynthetic protist. At a resolution of 32.5 Å and 27.5 Å, respectively, the two structures clearly exhibit a noncanonical F1 head, in which the catalytic (αß)3 assembly forms a triangular pyramid rather than the pseudo-sixfold ring arrangement typical of all other ATP synthases investigated so far. Fitting of known X-ray structures reveals that this unusual geometry results from a phylum-specific cleavage of the α subunit, in which the C-terminal αC fragments are displaced by ∼20 Å and rotated by ∼30° from their expected positions. In this location, the αC fragment is unable to form the conserved catalytic interface that was thought to be essential for ATP synthesis, and cannot convert γ-subunit rotation into the conformational changes implicit in rotary catalysis. The new arrangement of catalytic subunits suggests that the mechanism of ATP generation by rotary ATPases is less strictly conserved than has been generally assumed. The ATP synthases of these organisms present a unique model system for discerning the individual contributions of the α and ß subunits to the fundamental process of ATP synthesis.


Assuntos
Euglena gracilis/enzimologia , ATPases Translocadoras de Prótons/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Trifosfato de Adenosina/biossíntese , Sequência de Aminoácidos , Animais , Catálise , Domínio Catalítico , Sequência Consenso , Dimerização , Mitocôndrias/enzimologia , Modelos Moleculares , Conformação Proteica , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Protozoários/metabolismo , Rotação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Proc Natl Acad Sci U S A ; 113(30): 8442-7, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402755

RESUMO

F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/química , Modelos Moleculares , Paramecium tetraurellia/enzimologia , Paramecium tetraurellia/metabolismo , Paramecium tetraurellia/ultraestrutura , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química
6.
Nat Commun ; 13(1): 5989, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220811

RESUMO

Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Animais , Lipídeos , Mamíferos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Subunidades Proteicas/metabolismo , Prótons , Água
7.
Nat Commun ; 12(1): 120, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402698

RESUMO

Mitochondrial ATP synthase plays a key role in inducing membrane curvature to establish cristae. In Apicomplexa causing diseases such as malaria and toxoplasmosis, an unusual cristae morphology has been observed, but its structural basis is unknown. Here, we report that the apicomplexan ATP synthase assembles into cyclic hexamers, essential to shape their distinct cristae. Cryo-EM was used to determine the structure of the hexamer, which is held together by interactions between parasite-specific subunits in the lumenal region. Overall, we identified 17 apicomplexan-specific subunits, and a minimal and nuclear-encoded subunit-a. The hexamer consists of three dimers with an extensive dimer interface that includes bound cardiolipins and the inhibitor IF1. Cryo-ET and subtomogram averaging revealed that hexamers arrange into ~20-megadalton pentagonal pyramids in the curved apical membrane regions. Knockout of the linker protein ATPTG11 resulted in the loss of pentagonal pyramids with concomitant aberrantly shaped cristae. Together, this demonstrates that the unique macromolecular arrangement is critical for the maintenance of cristae morphology in Apicomplexa.


Assuntos
Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/química , Subunidades Proteicas/química , Proteínas de Protozoários/química , Toxoplasma/ultraestrutura , Sítios de Ligação , Cardiolipinas/química , Cardiolipinas/metabolismo , Microscopia Crioeletrônica , Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Especificidade por Substrato , Termodinâmica , Toxoplasma/genética , Toxoplasma/metabolismo , Proteína Inibidora de ATPase
8.
Nat Commun ; 11(1): 5342, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093501

RESUMO

Mitochondrial ATP synthases form functional homodimers to induce cristae curvature that is a universal property of mitochondria. To expand on the understanding of this fundamental phenomenon, we characterized the unique type III mitochondrial ATP synthase in its dimeric and tetrameric form. The cryo-EM structure of a ciliate ATP synthase dimer reveals an unusual U-shaped assembly of 81 proteins, including a substoichiometrically bound ATPTT2, 40 lipids, and co-factors NAD and CoQ. A single copy of subunit ATPTT2 functions as a membrane anchor for the dimeric inhibitor IF1. Type III specific linker proteins stably tie the ATP synthase monomers in parallel to each other. The intricate dimer architecture is scaffolded by an extended subunit-a that provides a template for both intra- and inter-dimer interactions. The latter results in the formation of tetramer assemblies, the membrane part of which we determined to 3.1 Å resolution. The structure of the type III ATP synthase tetramer and its associated lipids suggests that it is the intact unit propagating the membrane curvature.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/química , Microscopia Crioeletrônica , Lipídeos de Membrana/química , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/classificação , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Proteínas/química , Proteínas/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/ultraestrutura , Tetrahymena thermophila/enzimologia , Tetrahymena thermophila/ultraestrutura , Proteína Inibidora de ATPase
9.
Elife ; 82019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31738165

RESUMO

The mitochondrial ATP synthase fuels eukaryotic cells with chemical energy. Here we report the cryo-EM structure of a divergent ATP synthase dimer from mitochondria of Euglena gracilis, a member of the phylum Euglenozoa that also includes human parasites. It features 29 different subunits, 8 of which are newly identified. The membrane region was determined to 2.8 Å resolution, enabling the identification of 37 associated lipids, including 25 cardiolipins, which provides insight into protein-lipid interactions and their functional roles. The rotor-stator interface comprises four membrane-embedded horizontal helices, including a distinct subunit a. The dimer interface is formed entirely by phylum-specific components, and a peripherally associated subcomplex contributes to the membrane curvature. The central and peripheral stalks directly interact with each other. Last, the ATPase inhibitory factor 1 (IF1) binds in a mode that is different from human, but conserved in Trypanosomatids.


Assuntos
Cardiolipinas/química , Cardiolipinas/metabolismo , Euglena gracilis/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Microscopia Crioeletrônica , Ligação Proteica , Conformação Proteica
10.
Cell Metab ; 21(5): 747-55, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25955210

RESUMO

The mitochondrial contact site and cristae organizing system (MICOS) is a conserved multi-subunit complex crucial for maintaining the characteristic architecture of mitochondria. Studies with deletion mutants identified Mic10 and Mic60 as core subunits of MICOS. Mic60 has been studied in detail; however, topogenesis and function of Mic10 are unknown. We report that targeting of Mic10 to the mitochondrial inner membrane requires a positively charged internal loop, but no cleavable presequence. Both transmembrane segments of Mic10 carry a characteristic four-glycine motif, which has been found in the ring-forming rotor subunit of F1Fo-ATP synthases. Overexpression of Mic10 profoundly alters the architecture of the inner membrane independently of other MICOS components. The four-glycine motifs are dispensable for interaction of Mic10 with other MICOS subunits but are crucial for the formation of large Mic10 oligomers. Our studies identify a unique role of Mic10 oligomers in promoting the formation of inner membrane crista junctions.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Membrana/análise , Mitocôndrias/química , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/análise , Dados de Sequência Molecular , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análise
11.
J Vis Exp ; (91): 51228, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25285856

RESUMO

Electron cryo-tomography is a powerful tool in structural biology, capable of visualizing the three-dimensional structure of biological samples, such as cells, organelles, membrane vesicles, or viruses at molecular detail. To achieve this, the aqueous sample is rapidly vitrified in liquid ethane, which preserves it in a close-to-native, frozen-hydrated state. In the electron microscope, tilt series are recorded at liquid nitrogen temperature, from which 3D tomograms are reconstructed. The signal-to-noise ratio of the tomographic volume is inherently low. Recognizable, recurring features are enhanced by subtomogram averaging, by which individual subvolumes are cut out, aligned and averaged to reduce noise. In this way, 3D maps with a resolution of 2 nm or better can be obtained. A fit of available high-resolution structures to the 3D volume then produces atomic models of protein complexes in their native environment. Here we show how we use electron cryo-tomography to study the in situ organization of large membrane protein complexes in mitochondria. We find that ATP synthases are organized in rows of dimers along highly curved apices of the inner membrane cristae, whereas complex I is randomly distributed in the membrane regions on either side of the rows. By subtomogram averaging we obtained a structure of the mitochondrial ATP synthase dimer within the cristae membrane.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/análise , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Multimerização Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA