Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Trends Biochem Sci ; 47(12): 1009-1022, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35835684

RESUMO

Cell cycle-dependent gene transcription is tightly controlled by the retinoblastoma (RB):E2F and DREAM complexes, which repress all cell cycle genes during quiescence. Cyclin-dependent kinase (CDK) phosphorylation of RB and DREAM allows for the expression of two gene sets. The first set of genes, with peak expression in G1/S, is activated by E2F transcription factors (TFs) and is required for DNA synthesis. The second set, with maximum expression during G2/M, is required for mitosis and is coordinated by the MuvB complex, together with B-MYB and Forkhead box M1 (FOXM1). In this review, we summarize the key findings that established the distinct control mechanisms regulating G1/S and G2/M gene expression in mammals and discuss recent advances in the understanding of the temporal control of these genes.


Assuntos
Proteínas de Ciclo Celular , Proteínas Repressoras , Animais , Proteínas Repressoras/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , Quinases Ciclina-Dependentes/genética , Expressão Gênica , Mamíferos
2.
J Biol Chem ; 298(9): 102319, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926712

RESUMO

B-Myb is a highly conserved member of the vertebrate Myb family of transcription factors that plays a critical role in cell-cycle progression and proliferation. Myb proteins activate Myb-dependent promoters by interacting specifically with Myb-binding site (MBS) sequences using their DNA-binding domain (DBD). Transactivation of MBS promoters by B-Myb is repressed by its negative regulatory domain (NRD), and phosphorylation of the NRD by Cdk2-CyclinA relieves the repression to activate B-Myb-dependent promoters. However, the structural mechanisms underlying autoinhibition and activation of B-Myb-mediated transcription have been poorly characterized. Here, we determined that a region in the B-Myb NRD (residues 510-600) directly associates with the DBD and inhibits binding of the DBD to the MBS DNA sequence. We demonstrate using biophysical assays that phosphorylation of the NRD at T515, T518, and T520 is sufficient to disrupt the interaction between the NRD and the DBD, which results in increased affinity for MBS DNA and increased B-Myb-dependent promoter activation in cell assays. Our biochemical characterization of B-Myb autoregulation and the activating effects of phosphorylation provide insight into how B-Myb functions as a site-specific transcription factor.


Assuntos
Proteínas de Ciclo Celular , Quinase 2 Dependente de Ciclina , DNA , Transativadores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , DNA/metabolismo , Humanos , Fosforilação , Domínios Proteicos , Transativadores/química , Transativadores/metabolismo , Ativação Transcricional
3.
Nucleic Acids Res ; 47(17): 9087-9103, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31400114

RESUMO

Most human cancers acquire mutations causing defects in the p53 signaling pathway. The tumor suppressor p53 becomes activated in response to genotoxic stress and is essential for arresting the cell cycle to facilitate DNA repair or to initiate apoptosis. p53-induced cell cycle-arrest is mediated by expression of the CDK inhibitor p21WAF1/Cip1, which prevents phosphorylation and inactivation of the pocket proteins RB, p130, and p107. In a hypophosphorylated state, pocket proteins bind to E2F factors forming RB-E2F and DREAM transcriptional repressor complexes. Here, we analyze the influence of RB and DREAM on p53-induced gene repression and cell-cycle arrest. We show that abrogation of DREAM function by knockout of the DREAM component LIN37 results in a reduced repression of cell-cycle genes. We identify the genes repressed by the p53-DREAM pathway and describe a set of genes that is downregulated by p53 independent of LIN37/DREAM. Most strikingly, p53-dependent repression of cell-cycle genes is completely abrogated in LIN37-/-;RB-/- cells leading to a loss of the G1/S checkpoint. Taken together, we show that DREAM and RB are key factors in the p53 signaling pathway to downregulate a large number of cell-cycle genes and to arrest the cell cycle at the G1/S transition.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Regulação da Expressão Gênica , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/genética , Transativadores/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Células Cultivadas , Proteína Substrato Associada a Crk/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Fibroblastos/metabolismo , Genes cdc , Células HCT116 , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Camundongos , Proteínas Repressoras/genética , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Transativadores/genética , Transativadores/metabolismo , Proteína Supressora de Tumor p53/genética
4.
Crit Rev Biochem Mol Biol ; 52(6): 638-662, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28799433

RESUMO

The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.


Assuntos
Ciclo Celular , Fatores de Transcrição E2F/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/metabolismo , Transativadores/metabolismo , Ativação Transcricional , Animais , Diferenciação Celular , Fatores de Transcrição E2F/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Mapas de Interação de Proteínas , Proteínas Repressoras/genética , Proteína do Retinoblastoma/genética , Transativadores/genética , Transcrição Gênica
5.
Nucleic Acids Res ; 42(1): 163-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24071582

RESUMO

Infection by oncogenic viruses is a frequent cause for tumor formation as observed in cervical cancer. Viral oncoproteins cause inactivation of p53 function and false transcriptional regulation of central cell cycle genes. Here we analyze the regulation of Plk4, serving as an example of many cell cycle- and p53-regulated genes. Cell cycle genes are often repressed via CDE and CHR elements in their promoters and activated by NF-Y binding to CCAAT-boxes. In contrast, general activation of Plk4 depends on NRF1 and CRE sites. Bioinformatic analyses imply that NRF1 and CRE are central elements of the transcriptional network controlling cell cycle genes. We identify CDE and CHR sites in the Plk4 promoter, which are necessary for binding of the DREAM (DP, RB-like, E2F4 and MuvB) complex and for mediating repression in G0/G1. When cells progress to G2 and mitosis, DREAM is replaced by the MMB (Myb-MuvB) complex that only requires the CHR element for binding. Plk4 expression is downregulated by the p53-p21(WAF1/CIP1)-DREAM signaling pathway through the CDE and CHR sites. Cell cycle- and p53-dependent repression is abrogated by HPV E7 oncoprotein. Together with genome-wide analyses our results imply that many cell cycle genes upregulated in tumors by viral infection are bound by DREAM through CDE/CHR sites.


Assuntos
Proteínas E7 de Papillomavirus/metabolismo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/metabolismo , Ativação Transcricional , Animais , Sequência de Bases , Sítios de Ligação , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fator 1 Nuclear Respiratório/metabolismo , Elementos de Resposta , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
Nucleic Acids Res ; 42(16): 10331-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25106871

RESUMO

The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB.


Assuntos
Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genes cdc , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Divisão Celular/genética , Linhagem Celular , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/metabolismo , Fase G2/genética , Genoma , Humanos , Camundongos , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica
7.
Nucleic Acids Res ; 40(4): 1561-78, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22064854

RESUMO

Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle.


Assuntos
Ciclina B2/genética , Regulação da Expressão Gênica , Genes cdc , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Sequência Conservada , Humanos , Camundongos , Células NIH 3T3 , Filogenia , Ativação Transcricional , Enzimas de Conjugação de Ubiquitina/genética
8.
Nat Commun ; 15(1): 4450, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789411

RESUMO

Histone deacetylases (HDACs) play a crucial role in transcriptional regulation and are implicated in various diseases, including cancer. They are involved in histone tail deacetylation and canonically linked to transcriptional repression. Previous studies suggested that HDAC recruitment to cell-cycle gene promoters via the retinoblastoma (RB) protein or the DREAM complex through SIN3B is essential for G1/S and G2/M gene repression during cell-cycle arrest and exit. Here we investigate the interplay among DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. Knockout of SIN3B does not globally derepress cell-cycle genes in non-proliferating HCT116 and C2C12 cells. Loss of SIN3A/B moderately upregulates several cell-cycle genes in HCT116 cells but does so independently of DREAM/RB. HDAC inhibition does not induce general upregulation of RB/DREAM target genes in arrested transformed or non-transformed cells. Our findings suggest that E2F:RB and DREAM complexes can repress cell-cycle genes without relying on HDAC activity.


Assuntos
Fatores de Transcrição E2F , Histona Desacetilases , Proteínas Repressoras , Proteína do Retinoblastoma , Humanos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Células HCT116 , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição E2F/metabolismo , Fatores de Transcrição E2F/genética , Proteína do Retinoblastoma/metabolismo , Proteína do Retinoblastoma/genética , Camundongos , Animais , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Interatuantes com Canais de Kv/genética , Ciclo Celular/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica , Genes cdc
9.
FASEB J ; 26(2): 668-77, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22038052

RESUMO

The vascular type of the Ehlers-Danlos syndrome (vEDS) is caused by dominant-negative mutations in the procollagen type III (COL3A1) gene. Patients with this autosomal dominant disorder have a shortened life expectancy due to complications from ruptured vessels or hollow organs. We tested the effectiveness of allele-specific RNA interference (RNAi) to reduce the mutated phenotype in fibroblasts. Small-interfering RNAs (siRNAs) discriminating between wild-type and mutant COL3A1 allele were identified by a luciferase reporter gene assay and in primary fibroblasts from a normal donor and a patient with vEDS. The best discriminative siRNA with the mutation at position 10 resulted in >90% silencing of the mutant allele without affecting the wild-type allele. Transmission and immunogold electron microscopy of extracted extracellular matrices from untreated fibroblasts of the patient with vEDS revealed structurally abnormal fibrils. After siRNA treatment, collagen fibrils became similar to fibrils from fibroblasts of normal and COL3A1 haploinsufficient donors. In addition, it was shown that expression of mutated COL3A1 activates the unfolded protein response and that reduction of the amount of mutated protein by siRNA reduces cellular stress. Taken together, the results provide evidence that allele-specific siRNAs are able to reduce negative effects of mutated COL3A1 proteins. Thus, the application of allele-specific RNAi may be a promising direction for future personalized therapies to reduce the severity of vEDS.


Assuntos
Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/terapia , Técnicas de Silenciamento de Genes , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Alelos , Substituição de Aminoácidos , Sequência de Bases , Células Cultivadas , Colágeno Tipo III/genética , Síndrome de Ehlers-Danlos/patologia , Matriz Extracelular/ultraestrutura , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes Reporter , Terapia Genética/métodos , Haploinsuficiência , Humanos , Luciferases/genética , Microscopia Imunoeletrônica , Proteínas Mutantes/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , Medicina de Precisão , Interferência de RNA , Resposta a Proteínas não Dobradas/genética
10.
bioRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961464

RESUMO

Histone deacetylases (HDACs) are pivotal in transcriptional regulation, and their dysregulation has been associated with various diseases including cancer. One of the critical roles of HDAC-containing complexes is the deacetylation of histone tails, which is canonically linked to transcriptional repression. Previous research has indicated that HDACs are recruited to cell-cycle gene promoters through the RB protein or the DREAM complex via SIN3B and that HDAC activity is essential for repressing G1/S and G2/M cell-cycle genes during cell-cycle arrest and exit. In this study, we sought to explore the interdependence of DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. We found that genetic knockout of SIN3B did not lead to derepression of cell-cycle genes in non-proliferating HCT116 and C2C12 cells. A combined loss of SIN3A and SIN3B resulted in a moderate upregulation in mRNA expression of several cell-cycle genes in arrested HCT116 cells, however, these effects appeared to be independent of DREAM or RB. Furthermore, HDAC inhibition did not induce a general upregulation of RB and DREAM target gene expression in arrested transformed or non-transformed cells. Our findings provide evidence that E2F:RB and DREAM complexes can repress cell-cycle genes without reliance on HDAC activity.

11.
J Virol ; 85(24): 13322-32, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957284

RESUMO

Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein driving assembly and release of virions from infected cells. Gag alone is capable of self-assembly in vitro, but host factors have been shown to play a role in efficient viral replication and particle morphogenesis within the living cell. In a series of affinity purification experiments, we identified the cellular protein Lyric to be an HIV-1 Gag-interacting protein. Lyric was previously described to be an HIV-inducible gene and is involved in various signaling pathways. Gag interacts with endogenous Lyric via its matrix (MA) and nucleocapsid (NC) domains. This interaction requires Gag multimerization and Lyric amino acids 101 to 289. Endogenous Lyric is incorporated into HIV-1 virions and is cleaved by the viral protease. Gag-Lyric interaction was also observed for murine leukemia virus and equine infectious anemia virus, suggesting that it represents a conserved feature among retroviruses. Expression of the Gag binding domain of Lyric increased Gag expression levels and viral infectivity, whereas expression of a Lyric mutant lacking the Gag binding site resulted in lower Gag expression and decreased viral infectivity. The results of the current study identify Lyric to be a cellular interaction partner of HIV-1 Gag and hint at a potential role in regulating infectivity. Further experiments are needed to elucidate the precise role of this interaction.


Assuntos
Moléculas de Adesão Celular/metabolismo , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Vírus da Anemia Infecciosa Equina/patogenicidade , Vírus da Leucemia Murina/patogenicidade , Proteínas de Membrana , Ligação Proteica , Proteínas de Ligação a RNA
12.
Oncogene ; 41(21): 2909-2919, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468940

RESUMO

Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Humanos , Mitose/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/radioterapia , Transativadores/genética
13.
Structure ; 30(9): 1340-1353.e3, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716663

RESUMO

The retinoblastoma protein (Rb) and its homologs p107 and p130 are critical regulators of gene expression during the cell cycle and are commonly inactivated in cancer. Rb proteins use their "pocket domain" to bind an LxCxE sequence motif in other proteins, many of which function with Rb proteins to co-regulate transcription. Here, we present binding data and crystal structures of the p107 pocket domain in complex with LxCxE peptides from the transcriptional co-repressor proteins HDAC1, ARID4A, and EID1. Our results explain why Rb and p107 have weaker affinity for cellular LxCxE proteins compared with the E7 protein from human papillomavirus, which has been used as the primary model for understanding LxCxE motif interactions. Our structural and mutagenesis data also identify and explain differences in Rb and p107 affinities for some LxCxE-containing sequences. Our study provides new insights into how Rb proteins bind their cell partners with varying affinity and specificity.


Assuntos
Proteínas Repressoras , Proteína do Retinoblastoma , Ciclo Celular , Humanos , Proteínas Repressoras/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo
14.
Nat Commun ; 13(1): 526, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082292

RESUMO

The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression.


Assuntos
Genes cdc , Nucleossomos/metabolismo , Ligação Proteica , Sítio de Iniciação de Transcrição , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Cromatina , DNA/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
15.
Methods Mol Biol ; 2267: 81-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786786

RESUMO

The interaction of proteins with DNA plays a central role in gene regulation. We describe a DNA affinity purification method that allows for identification and analysis of protein complex components. For example, a DNA probe carrying a transcription factor binding site is used to purify proteins from a nuclear extract. The proteins binding to the probe are then identified by mass spectrometry. In similar experiments, proteins purified by this pulldown method can be analyzed by Western blot. Employing this method, we found that the DREAM transcriptional repressor complex binds to CHR transcriptional elements in promoters of cell cycle genes. This complex is important for cell cycle-dependent repression and as part of the p53-DREAM pathway serves as a link for indirect transcriptional repression of target genes by the tumor suppressor p53. In general, the methods described can be applied for the identification and analysis of proteins binding to DNA.


Assuntos
Fracionamento Químico/métodos , DNA/química , Imunoprecipitação/métodos , Fatores de Transcrição/metabolismo , Animais , Biotinilação/métodos , Western Blotting/métodos , Linhagem Celular , DNA/metabolismo , Humanos , Espectrometria de Massas/métodos , Regiões Promotoras Genéticas , Ligação Proteica
16.
Cell Death Differ ; 28(12): 3357-3370, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34183782

RESUMO

Ki-67 serves as a prominent cancer marker. We describe how expression of the MKI67 gene coding for Ki-67 is controlled during the cell cycle. MKI67 mRNA and Ki-67 protein are maximally expressed in G2 phase and mitosis. Expression is dependent on two CHR elements and one CDE site in the MKI67 promoter. DREAM transcriptional repressor complexes bind to both CHR sites and downregulate the expression in G0/G1 cells. Upregulation of MKI67 transcription coincides with binding of B-MYB-MuvB and FOXM1-MuvB complexes from S phase into G2/M. Importantly, binding of B-MYB to the two CHR elements correlates with loss of CHR-dependent MKI67 promoter activation in B-MYB-knockdown experiments. In knockout cell models, we find that DREAM/MuvB-dependent transcriptional control cooperates with the RB Retinoblastoma tumor suppressor. Furthermore, the p53 tumor suppressor indirectly downregulates transcription of the MKI67 gene. This repression by p53 requires p21/CDKN1A. These results are consistent with a model in which DREAM, B-MYB-MuvB, and FOXM1-MuvB together with RB cooperate in cell cycle-dependent transcription and in transcriptional repression following p53 activation. In conclusion, we present mechanisms how MKI67 gene expression followed by Ki-67 protein synthesis is controlled during the cell cycle and upon induction of DNA damage, as well as upon p53 activation.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Antígeno Ki-67/genética , Humanos , Transfecção
17.
Nucleic Acids Res ; 36(9): 2969-80, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18388131

RESUMO

S100A2 is generally found expressed in the epidermis and was recently shown to play a crucial role in the differentiation of keratinocytes. Also known as CaN19, S100A2 was identified as a potential tumor suppressor. Expression of S100A2 is upregulated by p53. The proteins p63 and p73 are related to p53 and are expressed as several splice variants with partially overlapping tasks but also functions different from p53. It had been shown that p63 proteins with mutations in their DNA-binding domain cause severe phenotypes in man as autosomal dominantly inherited disease including EEC, AEC, SHFM, LMS and ADULT syndromes. Here we show that S100A2 is a transcriptional target of p63/p73 family members, particularly the p63 splice variant TAp63gamma. The regulation is mediated by a novel transcriptional element in the S100A2 promoter which is bound by TAp63gamma but not by p53. Mutant p63 proteins derived from EEC and ADULT syndrome patients cannot activate S100A2 transcription whereas SHFM-related mutants still can stimulate the S100A2 promoter. Consistent with a function in tumor suppression S100A2 expression is stimulated upon DNA damage. After doxorubicin treatment p63gamma proteins are recruited to the S100A2 promoter in vivo. This may indicate a function of the p63-dependent S100A2 regulation in tumor suppression.


Assuntos
Fatores Quimiotáticos/genética , Genes Supressores de Tumor , Proteínas de Membrana/metabolismo , Proteínas S100/genética , Ativação Transcricional , Anormalidades Múltiplas/genética , Sítios de Ligação , Linhagem Celular , Fatores Quimiotáticos/biossíntese , Dano ao DNA , Humanos , Proteínas de Membrana/genética , Mutação , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Elementos de Resposta , Proteínas S100/biossíntese , Síndrome , Proteína Supressora de Tumor p53/metabolismo
18.
Cancers (Basel) ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365858

RESUMO

In search of new biomarkers suitable for the diagnosis and treatment of prostate cancer, genome-wide transcriptome sequencing was carried out with tissue specimens from 40 prostate cancer (PCa) and 8 benign prostate hyperplasia patients. We identified two intergenic long non-coding transcripts, located in close genomic proximity, which are highly expressed in PCa. Microarray studies on a larger cohort comprising 155 patients showed a profound diagnostic potential of these transcripts (AUC~0.94), which we designated as tumor associated prostate cancer increased lncRNA (TAPIR-1 and -2). To test their therapeutic potential, knockdown experiments with siRNA were carried out. The knockdown caused an increase in the p53/TP53 tumor suppressor protein level followed by downregulation of a large number of cell cycle- and DNA-damage repair key regulators. Furthermore, in radiation therapy resistant tumor cells, the knockdown leads to a renewed sensitization of these cells to radiation treatment. Accordingly, in a preclinical PCa xenograft model in mice, the systemic application of nanoparticles loaded with siRNA targeting TAPIR-1 significantly reduced tumor growth. These findings point to a crucial role of TAPIR-1 and -2 in PCa.

19.
Elife ; 62017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28920576

RESUMO

The retinoblastoma Rb protein is an important factor controlling the cell cycle. Yet, mammalian cells carrying Rb deletions are still able to arrest under growth-limiting conditions. The Rb-related proteins p107 and p130, which are components of the DREAM complex, had been suggested to be responsible for a continued ability to arrest by inhibiting E2f activity and by recruiting chromatin-modifying enzymes. Here, we show that p130 and p107 are not sufficient for DREAM-dependent repression. We identify the MuvB protein Lin37 as an essential factor for DREAM function. Cells not expressing Lin37 proliferate normally, but DREAM completely loses its ability to repress genes in G0/G1 while all remaining subunits, including p130/p107, still bind to target gene promoters. Furthermore, cells lacking both Rb and Lin37 are incapable of exiting the cell cycle. Thus, Lin37 is an essential component of DREAM that cooperates with Rb to induce quiescence.


Assuntos
Ciclo Celular , Regulação da Expressão Gênica , Proteína do Retinoblastoma/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Camundongos , Transativadores/genética
20.
Oncotarget ; 8(58): 97736-97748, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29228647

RESUMO

A central question in cell cycle control is how differential gene expression is regulated. Timing of expression is important for correct progression through the cell cycle. E2F, CDE, and CHR promoter sites have been linked to transcriptional repression in resting cells and activation during the cell cycle. Further, the DREAM complex binds CHR or CDE/CHR elements of G2/M genes resulting in repression during G0/G1. Here, we show that DREAM also binds to E2F sites of S phase genes in quiescence and upon p53 activation. Furthermore, we describe a novel class of promoter sites, the CHR-like elements (CLE), which can support binding of DREAM to E2F elements. Activation of such S phase genes is achieved through binding of E2F1-3/DP complexes to E2F sites. In contrast, the activating MuvB complexes MMB and FOXM1-MuvB bind to CHR elements and mediate peak expression in G2/M. In conclusion, data presented here in combination with earlier results leads us to propose a model that explains how DREAM can repress early cell cycle genes through E2F or E2F/CLE sites and late genes through CHR or CDE/CHR elements. Also p53-dependent indirect transcriptional repression through the p53-p21-Cyclin/CDK-DREAM-E2F/CLE/CDE/CHR pathway requires DREAM binding to E2F or E2F/CLE sites in early cell cycle genes and binding of DREAM to CHR or CDE/CHR elements of late cell cycle genes. Specific timing of activation is achieved through binding of E2F1-3/DP to E2F sites and MMB or FOXM1-MuvB complexes to CHR elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA