Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 156(1-2): 343-58, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439387

RESUMO

Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.


Assuntos
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Animais , Linhagem Celular , Células Cultivadas , Sequência Conservada , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/metabolismo , Humanos , Resistência à Insulina , PPAR gama/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
2.
Hum Hered ; 89(1): 8-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198765

RESUMO

INTRODUCTION: Joint linkage and association (JLA) analysis combines two disease gene mapping strategies: linkage information contained in families and association information contained in populations. Such a JLA analysis can increase mapping power, especially when the evidence for both linkage and association is low to moderate. Similarly, an association analysis based on haplotypes instead of single markers can increase mapping power when the association pattern is complex. METHODS: In this paper, we present an extension to the GENEHUNTER-MODSCORE software package that enables a JLA analysis based on haplotypes and uses information from arbitrary pedigree types and unrelated individuals. Our new JLA method is an extension of the MOD score approach for linkage analysis, which allows the estimation of trait-model and linkage disequilibrium (LD) parameters, i.e., penetrance, disease-allele frequency, and haplotype frequencies. LD is modeled between alleles at a single diallelic disease locus and up to three diallelic test markers. Linkage information is contributed by additional multi-allelic flanking markers. We investigated the statistical properties of our JLA implementation using extensive simulations, and we compared our approach to another commonly used single-marker JLA test. To demonstrate the applicability of our new method in practice, we analyzed pedigree data from the German National Case Collection for Familial Pancreatic Cancer (FaPaCa). RESULTS: Based on the simulated data, we demonstrated the validity of our JLA-MOD score analysis implementation and identified scenarios in which haplotype-based tests outperformed the single-marker test. The estimated trait-model and LD parameters were in good accordance with the simulated values. Our method outperformed another commonly used JLA single-marker test when the LD pattern was complex. The exploratory analysis of the FaPaCa families led to the identification of a promising genetic region on chromosome 22q13.33, which can serve as a starting point for future mutation analysis and molecular research in pancreatic cancer. CONCLUSION: Our newly proposed JLA-MOD score method proves to be a valuable gene mapping and characterization tool, especially when either linkage or association information alone provide insufficient power to identify the disease-causing genetic variants.


Assuntos
Carcinoma , Ligação Genética , Haplótipos , Desequilíbrio de Ligação , Neoplasias Pancreáticas , Software , Humanos , Neoplasias Pancreáticas/genética , Haplótipos/genética , Linhagem , Modelos Genéticos , Feminino , Masculino , Predisposição Genética para Doença , Simulação por Computador , Frequência do Gene/genética , Polimorfismo de Nucleotídeo Único/genética , Mapeamento Cromossômico/métodos
3.
Circ Res ; 130(2): 166-180, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34886679

RESUMO

RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus.


Assuntos
Polimorfismo de Nucleotídeo Único , Transposição dos Grandes Vasos/genética , Animais , Células Cultivadas , Humanos , Camundongos , Herança Multifatorial , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Transposição dos Grandes Vasos/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Peixe-Zebra
4.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1819-1828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38446204

RESUMO

PURPOSE: The aim of this study is to investigate the distribution of spherical equivalent and axial length in the general population and to analyze the influence of education on spherical equivalent with a focus on ocular biometric parameters. METHODS: The Gutenberg Health Study is a population-based cohort study in Mainz, Germany. Participants underwent comprehensive ophthalmologic examinations as part of the 5-year follow-up examination in 2012-2017 including genotyping. The spherical equivalent and axial length distributions were modeled with gaussian mixture models. Regression analysis (on person-individual level) was performed to analyze associations between biometric parameters and educational factors. Mendelian randomization analysis explored the causal effect between spherical equivalent, axial length, and education. Additionally, effect mediation analysis examined the link between spherical equivalent and education. RESULTS: A total of 8532 study participants were included (median age: 57 years, 49% female). The distribution of spherical equivalent and axial length follows a bi-Gaussian function, partially explained by the length of education (i.e., < 11 years education vs. 11-20 years). Mendelian randomization indicated an effect of education on refractive error using a genetic risk score of education as an instrument variable (- 0.35 diopters per SD increase in the instrument, 95% CI, - 0.64-0.05, p = 0.02) and an effect of education on axial length (0.63 mm per SD increase in the instrument, 95% CI, 0.22-1.04, p = 0.003). Spherical equivalent, axial length and anterior chamber depth were associated with length of education in regression analyses. Mediation analysis revealed that the association between spherical equivalent and education is mainly driven (70%) by alteration in axial length. CONCLUSIONS: The distribution of axial length and spherical equivalent is represented by subgroups of the population (bi-Gaussian). This distribution can be partially explained by length of education. The impact of education on spherical equivalent is mainly driven by alteration in axial length.


Assuntos
Comprimento Axial do Olho , Escolaridade , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Alemanha/epidemiologia , Comprimento Axial do Olho/patologia , Distribuição Normal , Biometria/métodos , Refração Ocular/fisiologia , Seguimentos , Erros de Refração/fisiopatologia , Erros de Refração/diagnóstico , Erros de Refração/genética , Idoso , Adulto
5.
Genet Epidemiol ; 45(6): 633-650, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34082474

RESUMO

It is still unclear how genetic information, provided as single-nucleotide polymorphisms (SNPs), can be most effectively integrated into risk prediction models for coronary heart disease (CHD) to add significant predictive value beyond clinical risk models. For the present study, a population-based case-cohort was used as a trainingset (451 incident cases, 1488 noncases) and an independent cohort as testset (160 incident cases, 2749 noncases). The following strategies to quantify genetic information were compared: A weighted genetic risk score including Metabochip SNPs associated with CHD in the literature (GRSMetabo ); selection of the most predictive SNPs among these literature-confirmed variants using priority-Lasso (PLMetabo ); validation of two comprehensive polygenic risk scores: GRSGola based on Metabochip data, and GRSKhera (available in the testset only) based on cross-validated genome-wide genotyping data. We used Cox regression to assess associations with incident CHD. C-index, category-free net reclassification index (cfNRI) and relative integrated discrimination improvement (IDIrel ) were used to quantify the predictive performance of genetic information beyond Framingham risk score variables. In contrast to GRSMetabo and PLMetabo , GRSGola significantly improved the prediction (delta C-index [95% confidence interval]: 0.0087 [0.0044, 0.0130]; IDIrel : 0.0509 [0.0131, 0.0894]; cfNRI improved only in cases: 0.1761 [0.0253, 0.3219]). GRSKhera yielded slightly worse prediction results than GRSGola .


Assuntos
Doença das Coronárias , Modelos Genéticos , Estudos de Coortes , Doença das Coronárias/diagnóstico , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Humanos , Polimorfismo de Nucleotídeo Único , Medição de Risco , Fatores de Risco
6.
Nature ; 536(7614): 41-47, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27398621

RESUMO

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Alelos , Análise Mutacional de DNA , Europa (Continente)/etnologia , Exoma , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Tamanho da Amostra
7.
Eur Heart J ; 42(20): 2000-2011, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33677556

RESUMO

AIMS: Our objective was to better understand the genetic bases of dilated cardiomyopathy (DCM), a leading cause of systolic heart failure. METHODS AND RESULTS: We conducted the largest genome-wide association study performed so far in DCM, with 2719 cases and 4440 controls in the discovery population. We identified and replicated two new DCM-associated loci on chromosome 3p25.1 [lead single-nucleotide polymorphism (SNP) rs62232870, P = 8.7 × 10-11 and 7.7 × 10-4 in the discovery and replication steps, respectively] and chromosome 22q11.23 (lead SNP rs7284877, P = 3.3 × 10-8 and 1.4 × 10-3 in the discovery and replication steps, respectively), while confirming two previously identified DCM loci on chromosomes 10 and 1, BAG3 and HSPB7. A genetic risk score constructed from the number of risk alleles at these four DCM loci revealed a 3-fold increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the referral population). In silico annotation and functional 4C-sequencing analyses on iPSC-derived cardiomyocytes identify SLC6A6 as the most likely DCM gene at the 3p25.1 locus. This gene encodes a taurine transporter whose involvement in myocardial dysfunction and DCM is supported by numerous observations in humans and animals. At the 22q11.23 locus, in silico and data mining annotations, and to a lesser extent functional analysis, strongly suggest SMARCB1 as the candidate culprit gene. CONCLUSION: This study provides a better understanding of the genetic architecture of DCM and sheds light on novel biological pathways underlying heart failure.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca Sistólica , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose , Cardiomiopatia Dilatada/genética , Cromossomos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca Sistólica/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
8.
Basic Res Cardiol ; 116(1): 29, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891165

RESUMO

Upon activation, neutrophils release neutrophil extracellular traps (NETs), which contribute to circulating DNA burden and thrombosis, including ST-segment elevation myocardial infarction (STEMI). Deoxyribonuclease (DNase) 1 degrades circulating DNA and NETs. Lower DNase activity correlates with NET burden and infarct size. The DNase 1 Q222R single nucleotide polymorphism (SNP), impairing DNase 1 function, is linked with myocardial infarction. We assessed whether the Q222R SNP is connected to increased NET burden in STEMI and influences long-term outcomes. We enrolled 711 STEMI patients undergoing primary percutaneous coronary intervention (pPCI), and 1422 controls. Genotyping was performed for DNase 1 Q222R SNP. DNase activity, double-stranded (ds)DNA and citrullinated histone H3 were determined in culprit site and peripheral plasma during pPCI. The association of the Q222R variant on cardiovascular and all-cause mortality was assessed by multivariable Cox regression adjusted for cardiovascular risk factors. Homozygous Q222R DNase 1 variant was present in 64 (9.0%) STEMI patients, at the same frequency as in controls. Patients homozygous for Q222R displayed less DNase activity and increased circulating DNA burden. In overall patients, median survival was 60 months. Homozygous Q222R variant was independently associated with cardiovascular and all-cause mortality after STEMI. dsDNA/DNase ratio independently predicted cardiovascular and all-cause mortality. These findings highlight that the Q222R DNase 1 SNP is associated with increased NET burden and decreased compensatory DNase activity, and may serve as an independent risk factor for poor outcome after STEMI.


Assuntos
Desoxirribonuclease I/genética , Armadilhas Extracelulares/metabolismo , Polimorfismo de Nucleotídeo Único , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Idoso , Áustria , Estudos de Casos e Controles , Desoxirribonuclease I/metabolismo , Feminino , Estudos de Associação Genética , Alemanha , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea , Prognóstico , Medição de Risco , Fatores de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/mortalidade , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Fatores de Tempo
9.
Mov Disord ; 36(2): 449-459, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107653

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown. We aimed to investigate genetic overlap between MSA and 7 autoimmune diseases and to identify shared genetic loci. METHODS: Genome-wide association study summary statistics of MSA and 7 autoimmune diseases were combined in cross-trait conjunctional false discovery rate analysis to explore overlapping genetic background. Expression of selected candidate genes was compared in transgenic MSA mice and wild-type mice. Genetic variability of candidate genes was further investigated using independent whole-exome genotyping data from large cohorts of MSA and autoimmune disease patients and healthy controls. RESULTS: We observed substantial polygenic overlap between MSA and inflammatory bowel disease and identified 3 shared genetic loci with leading variants upstream of the DENND1B and RSP04 genes, and in intron of the C7 gene. Further, the C7 gene showed significantly dysregulated expression in the degenerating midbrain of transgenic MSA mice compared with wild-type mice and had elevated burden of protein-coding variants in independent MSA and inflammatory bowel disease cohorts. CONCLUSION: Our study provides evidence of shared genetic etiology between MSA and inflammatory bowel disease with an important role of the C7 gene in both phenotypes, with the implication of immune and gut dysfunction in MSA pathophysiology. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doenças Inflamatórias Intestinais , Atrofia de Múltiplos Sistemas , Animais , Estudo de Associação Genômica Ampla , Humanos , Doenças Inflamatórias Intestinais/genética , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/genética , alfa-Sinucleína/genética
10.
J Allergy Clin Immunol ; 145(4): 1208-1218, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31707051

RESUMO

BACKGROUND: Fifteen percent of atopic dermatitis (AD) liability-scale heritability could be attributed to 31 susceptibility loci identified by using genome-wide association studies, with only 3 of them (IL13, IL-6 receptor [IL6R], and filaggrin [FLG]) resolved to protein-coding variants. OBJECTIVE: We examined whether a significant portion of unexplained AD heritability is further explained by low-frequency and rare variants in the gene-coding sequence. METHODS: We evaluated common, low-frequency, and rare protein-coding variants using exome chip and replication genotype data of 15,574 patients and 377,839 control subjects combined with whole-transcriptome data on lesional, nonlesional, and healthy skin samples of 27 patients and 38 control subjects. RESULTS: An additional 12.56% (SE, 0.74%) of AD heritability is explained by rare protein-coding variation. We identified docking protein 2 (DOK2) and CD200 receptor 1 (CD200R1) as novel genome-wide significant susceptibility genes. Rare coding variants associated with AD are further enriched in 5 genes (IL-4 receptor [IL4R], IL13, Janus kinase 1 [JAK1], JAK2, and tyrosine kinase 2 [TYK2]) of the IL13 pathway, all of which are targets for novel systemic AD therapeutics. Multiomics-based network and RNA sequencing analysis revealed DOK2 as a central hub interacting with, among others, CD200R1, IL6R, and signal transducer and activator of transcription 3 (STAT3). Multitissue gene expression profile analysis for 53 tissue types from the Genotype-Tissue Expression project showed that disease-associated protein-coding variants exert their greatest effect in skin tissues. CONCLUSION: Our discoveries highlight a major role of rare coding variants in AD acting independently of common variants. Further extensive functional studies are required to detect all potential causal variants and to specify the contribution of the novel susceptibility genes DOK2 and CD200R1 to overall disease susceptibility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Dermatite Atópica/genética , Genótipo , Receptores de Orexina/genética , Fosfoproteínas/genética , Pele/metabolismo , Adulto , Estudos de Coortes , Proteínas Filagrinas , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Especificidade de Órgãos , Polimorfismo Genético , Risco , Transcriptoma
11.
Int J Cancer ; 146(7): 2036-2046, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31732966

RESUMO

In prostate adenocarcinoma (PCa), distinction between indolent and aggressive disease is challenging. Around 50% of PCa are characterized by TMPRSS2-ERG (T2E)-fusion oncoproteins defining two molecular subtypes (T2E-positive/negative). However, current prognostic tests do not differ between both molecular subtypes, which might affect outcome prediction. To investigate gene-signatures associated with metastasis in T2E-positive and T2E-negative PCa independently, we integrated tumor transcriptomes and clinicopathological data of two cohorts (total n = 783), and analyzed metastasis-associated gene-signatures regarding the T2E-status. Here, we show that the prognostic value of biomarkers in PCa critically depends on the T2E-status. Using gene-set enrichment analyses, we uncovered that metastatic T2E-positive and T2E-negative PCa are characterized by distinct gene-signatures. In addition, by testing genes shared by several functional gene-signatures for their association with event-free survival in a validation cohort (n = 272), we identified five genes (ASPN, BGN, COL1A1, RRM2 and TYMS)-three of which are included in commercially available prognostic tests-whose high expression was significantly associated with worse outcome exclusively in T2E-negative PCa. Among these genes, RRM2 and TYMS were validated by immunohistochemistry in another validation cohort (n = 135), and several of them proved to add prognostic information to current clinicopathological predictors, such as Gleason score, exclusively for T2E-negative patients. No prognostic biomarkers were identified exclusively for T2E-positive tumors. Collectively, our study discovers that the T2E-status, which is per se not a strong prognostic biomarker, crucially determines the prognostic value of other biomarkers. Our data suggest that the molecular subtype needs to be considered when applying prognostic biomarkers for outcome prediction in PCa.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Biomarcadores Tumorais , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Adenocarcinoma/diagnóstico , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/diagnóstico
12.
Mov Disord ; 35(7): 1245-1248, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32267580

RESUMO

OBJECTIVE: Impaired lysosomal degradation of α-synuclein and other cellular constituents may play an important role in Parkinson's disease (PD). Rare genetic variants in the glucocerebrosidase (GBA) gene were consistently associated with PD. Here we examine the association between rare variants in lysosomal candidate genes and PD. METHODS: We investigated the association between PD and rare genetic variants in 23 lysosomal candidate genes in 4096 patients with PD and an equal number of controls using pooled targeted next-generation DNA sequencing. Genewise association of rare variants in cases or controls was analyzed using the optimized sequence kernel association test with Bonferroni correction for the 23 tested genes. RESULTS: We confirm the association of rare variants in GBA with PD and report novel associations for rare variants in ATP13A2, LAMP1, TMEM175, and VPS13C. CONCLUSION: Rare variants in selected lysosomal genes, first and foremost GBA, are associated with PD. Rare variants in ATP13A2 and VPC13C previously linked to monogenic PD and more common variants in TMEM175 and VPS13C previously linked to sporadic PD in genome-wide association studies are associated with PD. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Estudo de Associação Genômica Ampla , Glucosilceramidase/genética , Humanos , Lisossomos , Mutação , Doença de Parkinson/genética
13.
Proc Natl Acad Sci U S A ; 114(14): 3613-3618, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28265093

RESUMO

Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3'-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357-360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis.


Assuntos
Histona Desacetilases/genética , Placa Aterosclerótica/complicações , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Acidente Vascular Cerebral/genética , alfa 1-Antitripsina/genética , Regiões 3' não Traduzidas , Medição da Troca de Deutério , Estudos de Associação Genética , Humanos , Elastase de Leucócito/metabolismo , Espectrometria de Massas , Placa Aterosclerótica/genética , Acidente Vascular Cerebral/etiologia , alfa 1-Antitripsina/metabolismo
14.
Hum Mol Genet ; 26(12): 2346-2363, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28379579

RESUMO

Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.


Assuntos
Frequência Cardíaca/genética , Adulto , Alelos , Exoma , Feminino , Frequência do Gene/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genótipo , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , População Branca/genética
15.
Eur Heart J ; 39(45): 4020-4029, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085086

RESUMO

Aims: Risks of catheter ablation for atrial fibrillation and flutter assessed in retrospective studies, registries, and controlled trials may underestimate 'real world' conditions. Methods and results: To assess complications in a nationwide approach, we included all cases undergoing catheter ablation for atrial fibrillation and atrial flutter in Germany in 2014, using ICD-10-GM-based German Diagnosis Related Group (G-DRG) codes and the well differentiated German Operation and Procedure Classification (OPS) analysing 33 353 in-hospital cases. For left atrial ablations (19 514 cases), the overall complication rate ranged from a mean of 11.7% to 13.8% depending on type and site of applied energy, including major complications ranging from 3.8% to 7.2%. Whereas overall complication rates were lower for atrial flutter ablations (13 871 cases, 10.5%; P < 0.001), interestingly, major complications occurred more frequently (7.4%; P < 0.001). Particularly, in-hospital death was four-times more common following right than following left atrial ablations (47 vs. 18 cases, 0.34% vs. 0.09%; P < 0.001). Stratified by centre ablation volume, significantly fewer overall complications occurred in centres performing >100 vs. ≤100 left atrial ablations annually (12.7% vs. 16.4%; P < 0.002). Conclusion: Administrative data of all atrial fibrillation ablations in Germany in 2014 revealed higher overall and major complication rates than previously reported. Few patients were treated in low volume centres, but were exposed to a higher overall complication risk. Atrial flutter ablations were associated with surprisingly high rates of life-threatening complications. Advanced age combined with highly prevalent cardiac, pulmonary and, vascular comorbidities likely play a major role. In addition, individual-level clinical studies need to address the safety and benefits of catheter ablation in an elderly, diseased population.


Assuntos
Fibrilação Atrial/cirurgia , Flutter Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Factuais , Feminino , Alemanha/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade
16.
Eur Heart J ; 39(44): 3961-3969, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30169657

RESUMO

Aims: Sudden cardiac arrest (SCA) accounts for 10% of adult mortality in Western populations. We aim to identify potential loci associated with SCA and to identify risk factors causally associated with SCA. Methods and results: We carried out a large genome-wide association study (GWAS) for SCA (n = 3939 cases, 25 989 non-cases) to examine common variation genome-wide and in candidate arrhythmia genes. We also exploited Mendelian randomization (MR) methods using cross-trait multi-variant genetic risk score associations (GRSA) to assess causal relationships of 18 risk factors with SCA. No variants were associated with SCA at genome-wide significance, nor were common variants in candidate arrhythmia genes associated with SCA at nominal significance. Using cross-trait GRSA, we established genetic correlation between SCA and (i) coronary artery disease (CAD) and traditional CAD risk factors (blood pressure, lipids, and diabetes), (ii) height and BMI, and (iii) electrical instability traits (QT and atrial fibrillation), suggesting aetiologic roles for these traits in SCA risk. Conclusions: Our findings show that a comprehensive approach to the genetic architecture of SCA can shed light on the determinants of a complex life-threatening condition with multiple influencing factors in the general population. The results of this genetic analysis, both positive and negative findings, have implications for evaluating the genetic architecture of patients with a family history of SCA, and for efforts to prevent SCA in high-risk populations and the general community.


Assuntos
Arritmias Cardíacas/genética , Morte Súbita Cardíaca/etiologia , Arritmias Cardíacas/fisiopatologia , Índice de Massa Corporal , Doença da Artéria Coronariana/genética , Feminino , Estudo de Associação Genômica Ampla , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Medição de Risco/métodos , Fatores de Risco , Fatores Sexuais
17.
Hum Mol Genet ; 25(2): 358-70, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561523

RESUMO

Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including ∼120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration.


Assuntos
Fibrinogênio/análise , Loci Gênicos , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fibrinogênio/genética , Estudo de Associação Genômica Ampla , Humanos , Mutação INDEL , Masculino , Pessoa de Meia-Idade , População Branca/genética
18.
Hum Mol Genet ; 25(18): 4094-4106, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466198

RESUMO

It has been hypothesized that low frequency (1-5% minor allele frequency (MAF)) and rare (<1% MAF) variants with large effect sizes may contribute to the missing heritability in complex traits. Here, we report an association analysis of lipid traits (total cholesterol, LDL-cholesterol, HDL-cholesterol triglycerides) in up to 27 312 individuals with a comprehensive set of low frequency coding variants (ExomeChip), combined with conditional analysis in the known lipid loci. No new locus reached genome-wide significance. However, we found a new lead variant in 26 known lipid association regions of which 16 were >1000-fold more significant than the previous sentinel variant and not in close LD (six had MAF <5%). Furthermore, conditional analysis revealed multiple independent signals (ranging from 1 to 5) in a third of the 98 lipid loci tested, including rare variants. Addition of our novel associations resulted in between 1.5- and 2.5-fold increase in the proportion of heritability explained for the different lipid traits. Our findings suggest that rare coding variants contribute to the genetic architecture of lipid traits.


Assuntos
HDL-Colesterol/genética , LDL-Colesterol/genética , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Adolescente , Adulto , Idoso , Criança , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Exoma/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Lipídeos/sangue , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Triglicerídeos/sangue , Triglicerídeos/genética , População Branca
19.
PLoS Genet ; 11(7): e1005230, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26132169

RESUMO

Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.


Assuntos
Mapeamento Cromossômico , Predisposição Genética para Doença , Índice Glicêmico/genética , Obesidade/genética , Locos de Características Quantitativas/genética , Índice de Massa Corporal , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Quinases do Centro Germinativo , Glucose-6-Fosfatase/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/genética , Trombospondinas/genética
20.
J Am Soc Nephrol ; 28(8): 2311-2321, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28360221

RESUMO

Disorders of water balance, an excess or deficit of total body water relative to body electrolyte content, are common and ascertained by plasma hypo- or hypernatremia, respectively. We performed a two-stage genome-wide association study meta-analysis on plasma sodium concentration in 45,889 individuals of European descent (stage 1 discovery) and 17,637 additional individuals of European descent (stage 2 replication), and a transethnic meta-analysis of replicated single-nucleotide polymorphisms in 79,506 individuals (63,526 individuals of European descent, 8765 individuals of Asian Indian descent, and 7215 individuals of African descent). In stage 1, we identified eight loci associated with plasma sodium concentration at P<5.0 × 10-6 Of these, rs9980 at NFAT5 replicated in stage 2 meta-analysis (P=3.1 × 10-5), with combined stages 1 and 2 genome-wide significance of P=5.6 × 10-10 Transethnic meta-analysis further supported the association at rs9980 (P=5.9 × 10-12). Additionally, rs16846053 at SLC4A10 showed nominally, but not genome-wide, significant association in combined stages 1 and 2 meta-analysis (P=6.7 × 10-8). NFAT5 encodes a ubiquitously expressed transcription factor that coordinates the intracellular response to hypertonic stress but was not previously implicated in the regulation of systemic water balance. SLC4A10 encodes a sodium bicarbonate transporter with a brain-restricted expression pattern, and variant rs16846053 affects a putative intronic NFAT5 DNA binding motif. The lead variants for NFAT5 and SLC4A10 are cis expression quantitative trait loci in tissues of the central nervous system and relevant to transcriptional regulation. Thus, genetic variation in NFAT5 and SLC4A10 expression and function in the central nervous system may affect the regulation of systemic water balance.


Assuntos
Loci Gênicos , Plasma/química , Simportadores de Sódio-Bicarbonato/genética , Sódio/análise , Fatores de Transcrição/genética , Desequilíbrio Hidroeletrolítico/sangue , Desequilíbrio Hidroeletrolítico/genética , Idoso , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Concentração Osmolar , Grupos Raciais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA