Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Eur Radiol ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265473

RESUMO

OBJECTIVE: Evaluation of tumor microvascular morphology is of great significance in tumor diagnosis, therapeutic effect prediction, and surgical planning. Recently, two-dimensional ultrasound localization microscopy (2DULM) has demonstrated its superiority in the field of microvascular imaging. However, it suffers from planar dependence and is unintuitive. We propose a novel three-dimensional ultrasound localization microscopy (3DULM) to avoid these limitations. METHODS: We investigated 3DULM based on a 2D array for tumor microvascular imaging. After intravenous injection of contrast agents, all elements of the 2D array transmit and receive signals to ensure a high and stable frame rate. Microbubble signal extraction, filtering, positioning, tracking, and other processing were used to obtain a 3D vascular map, flow velocity, and flow direction. To verify the effectiveness of 3DULM, it was validated on double helix tubes and rabbit VX2 tumors. Cisplatin was used to verify the ability of 3DULM to detect microvascular changes during tumor treatment. RESULTS: In vitro, the sizes measured by 3DULM at 3 mm and 13 mm were 178 [Formula: see text] and 182 [Formula: see text], respectively. In the rabbit tumors, we acquired 9000 volumes to reveal vessels about 30 [Formula: see text] in diameter, which surpasses the diffraction limit of ultrasound in traditional ultrasound imaging, and the results matched with micro-angiography. In addition, there were significant changes in vascular density and curvature between the treatment and control groups. CONCLUSIONS: The effectiveness of 3DULM was verified in vitro and in vivo. Hence, 3DULM may have potential applications in tumor diagnosis, tumor treatment evaluation, surgical protocol guidance, and cardiovascular disease. CLINICAL RELEVANCE STATEMENT: 3D ultrasound localization microscopy is highly sensitive to microvascular changes; thus, it has clinical potential for tumor diagnosis and treatment evaluation. KEY POINTS: • 3D ultrasound localization microscopy is demonstrated on double helix tubes and rabbit VX2 tumors. • 3D ultrasound localization microscopy can reveal vessels about 30 [Formula: see text] in diameter-far smaller than traditional ultrasound. • This form of imaging has potential applications in tumor diagnosis, tumor treatment evaluation, surgical protocol guidance, and cardiovascular disease.

2.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959737

RESUMO

Coordination polymers (CPs) are an assorted class of coordination complexes that are gaining attention for the safe and sustainable removal of organic dyes from wastewater discharge by either adsorption or photocatalytic degradation. Herein, three different coordination polymers with compositions [Ni(HL)(H2O)2·1.9H2O] (1), [Mn3(HL)(L)(µ3-OH)(H2O)(phen)2·2H2O] (2), and [Cd(HL)4(H2O)]·H2O (3) (H3L = 2-(3,5-dicarboxyphenyl)-6-carboxybenzimidazole; phen = 1,10-phenanthroline) have been synthesized and characterized spectroscopically and by single crystal X-ray diffraction. Single crystal X-ray diffraction results indicated that 1 forms a 2D layer-like framework, while 2 exhibits a 3-connected net with the Schläfli symbol of (44.6), and 3 displays a 3D supramolecular network in which two adjacent 2D layers are held by π···π interactions. All three compounds have been used as photocatalysts to catalyze the photodegradation of antibiotic dinitrozole (DTZ) and rhodamine B (RhB). The photocatalytic results suggested that the Mn-based CP 2 exhibited better photodecomposition of DTZ (91.1%) and RhB (95.0%) than the other two CPs in the time span of 45 min. The observed photocatalytic mechanisms have been addressed using Hirshfeld surface analyses.

3.
Small ; 18(12): e2104643, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34908239

RESUMO

Natural bacteria are interesting subjects for cancer treatments owing to their unique autonomy-driven and hypoxic target properties. Genetically modified bacteria (such as bacteria with msbB gene and aroA gene modifications) can effectively cross sophisticated physiological barriers and transport antitumor agents into deep tumor tissues, and they have good biosafety. Additionally, bacteria can secrete cytokines (such as interleukin-224, interferon-gamma [IFN-γ], and interleukin-1ß) and activate antitumor immune responses in the tumor microenvironment, resulting in tumor inhibition. All of these characteristics can be easily utilized to develop synergistic antitumor strategies by combining bacteria-based agents with other therapeutic approaches. Herein, representative studies of bacteria-instructed multimodal synergistic cancer therapy are introduced (e.g., photothermal therapy, chemoimmunotherapy, photodynamic therapy, and photocontrolled bacterial metabolite therapy), and their key advantages are systematically expounded. The current challenges and future prospects in advancing the development of bacteria-based micro/nanomedicines in the field of synthetic biology research are also emphasized, which will hopefully promote the development of related bacteria-based cancer therapies.


Assuntos
Nanopartículas , Neoplasias , Bactérias , Biônica , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Microambiente Tumoral
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(4): 401-404, 2020 Apr 10.
Artigo em Zh | MEDLINE | ID: mdl-32219822

RESUMO

OBJECTIVE: To compare the accuracy of five warfarin-dosing algorithms and warfarin stable dose model (2.5 mg/day) for Shandong population. METHODS: One hundred and twenty five patients who achieved stable warfarin dose were enrolled. Clinical and genetic data were used to evaluate the value of each algorithm by calculating the percentage of patients whose predicted warfarin dose was within 20% of the actual stable therapeutic dose and mean absolute error (MAE). RESULTS: The frequency of patients with CYP2C9*1/*1, CYP2C9*1/*3 and CYP2C9*1/*2 genotype was 92.00%, 7.20%, 0.80%, respectively. That of VKORC1-1639 AA, AG and GG genotype was 82.40%, 15.20%, 2.40%, respectively. CYP4F2*1/*1, *1/*3, *3/*3 genotype was 50.40%, 39.20%, 10.40%, respectively. With the same genotypes for other loci, patients who carried at least one VKORC1-16398G mutant allele had increased warfarin stable daily dose compared with VKORC1-1639AA. Compared with CYP4F2*1/*1, those carrying at least one CYP4F2*3 mutant allele had warfarin stable daily dose increased by 5.9%-13.00%. The percentage of ideal prediction calculated from IWPC model (59.20%), Huang model (57.60%) and Ohno model (52.80%) were higher than others. The MAE were 0.35 (95%CI: 0.11-0.49), 0.15 (95%CI: 0.10-0.32), 0.39 (95%CI: 0.12-0.51), respectively. CONCLUSION: The polymorphisms of CYP2C9, VKORC1 and CYP4F2 genes can influence the stable dose of warfarin in Shandong population. IWPC algorithm is suitable for guiding the use of warfarin in this population.


Assuntos
Anticoagulantes/administração & dosagem , Hidrocarboneto de Aril Hidroxilases , Varfarina/administração & dosagem , Citocromo P-450 CYP2C9/genética , Família 4 do Citocromo P450/genética , Relação Dose-Resposta a Droga , Genótipo , Humanos , Modelos Teóricos , Polimorfismo Genético , Vitamina K Epóxido Redutases/genética
5.
Small ; 15(5): e1804028, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30589210

RESUMO

Metal complexes are widely used as anticancer drugs, while the severe side effects of traditional chemotherapy require new therapeutic modalities. Sonodynamic therapy (SDT) provides a significantly noninvasive ultrasound (US) treatment approach by activating sonosensitizers and initiating reactive oxygen species (ROS) to damage malignant tissues. In this work, three metal 4-methylphenylporphyrin (TTP) complexes (MnTTP, ZnTTP, and TiOTTP) are synthesized and encapsulated with human serum albumin (HSA) to form novel nanosonosensitizers. These nanosonosensitizers generate abundant singlet oxygen (1 O2 ) under US irradiation, and importantly show excellent US-activatable abilities with deep-tissue depths up to 11 cm. Compared to ZnTTP-HSA and TiOTTP-HSA, MnTTP-HSA exhibits the strongest ROS-activatable behavior due to the lowest highest occupied molecular orbital-lowest unoccupied molecular orbital gap energy by density functional theory. It is also effective for deep-tissue photoacoustic/magnetic resonance dual-modal imaging to trace the accumulation of nanoparticles in tumors. Moreover, MnTTP-HSA intriguingly achieves high SDT efficiency for simultaneously suppressing the growth of bilateral tumors away from ultrasound source in mice. This work develops a deep-tissue imaging-guided SDT strategy through well-defined metalloporphyrin nanocomplexes and paves a new way for highly efficient noninvasive SDT treatments of malignant tumors.


Assuntos
Metaloporfirinas/química , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Nanomedicina Teranóstica , Terapia por Ultrassom , Animais , Humanos , Células MCF-7 , Imageamento por Ressonância Magnética , Camundongos Nus , Nanopartículas/ultraestrutura , Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas , Albumina Sérica Humana/química , Superóxidos/metabolismo
6.
Langmuir ; 35(8): 3031-3037, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30722665

RESUMO

Bacterial infection on biomaterial devices and the subsequent medical risks pose a serious problem in both human healthcare and industrial applications, resulting in a prevalence of various antimicrobial materials. Cationic amphiphilic polymer has been proposed to be a new generation of efficient antibacterial material, but the surface modified by such types of polymers still shows incomplete bactericidal ability and easily contaminated performance. With this in mind, a novel kind of geminized cationic amphiphilic polymer brush surface has been developed in this study, presenting a complete antibacterial activity, because of the synergistic biocidal effect of electrostatic and hydrophobic interactions, as well as the minimized contact area between bacteria and polymer surface. A structure self-adjustment process of polymer brush construction has been proposed, in which the mutual interference among cationic head groups can be avoided and the electrostatic repulsion and hydrophobic attraction can be balanced, in the formation of a smooth and tight surface. A self-cleaning capability of polymer surface has been performed via hydrolysis and degradation, maintaining a high antibacterial activity. Therefore, we provide a facile and possible manipulation strategy to fabricate super-antibacterial and self-cleaning surfaces in a wide range of biomedical and industrial applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Polímeros/farmacologia , Escherichia coli/efeitos dos fármacos , Modelos Moleculares , Conformação Molecular , Staphylococcus aureus/efeitos dos fármacos
7.
Molecules ; 23(6)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890688

RESUMO

Three new crystal structures containing [PtCl6]2−, pyridinium and benzimidazole groups have been prepared: [PtCl6]·(H-bzm)2·2(H2O) (1), [PtCl6]·(H-bipy)2·2(H2O) (2), [PtCl6]·(H-dimethyl-bipy)2·2(H2O) (3) [H-bzm: benzimidazole cation, H-bipy: 2,2'-bipyridine cation, H-dimethyl-bipy: 4,4'-bimethyl-2,2'-bipyridine cation]. All compounds have been fully characterized by elemental analyses, single-crystal X-ray analyses, IR spectra, TG analyses, and fluorescence studies. Single-crystal X-ray diffraction analysis suggests that the primary synthon contains ⁺N⁻H···Cl−, including ionic bonding and hydrogen bonding interactions. The dimensions are enhanced further by secondary O⁻H ∙∙Cl and N⁻H ∙∙O hydrogen bonding interactions between donor and acceptor atoms located at the periphery of these synthons. Moreover, coulombic attractions between the ions play an important role in reinforcing the structures of these complexes. In addition, antitumor activity against human lung adenocarcinoma cell line (A549) and human nasopharyngeal carcinoma cell line (CNE-2) was performed. These complexes all showed inhibition to the two cell lines, while complex 3 exhibited higher efficiency than complexes 1⁻2.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/análogos & derivados , Compostos Heterocíclicos/química , Compostos Inorgânicos/química , Nitrogênio/química , Compostos Orgânicos/química , Antineoplásicos/síntese química , Cátions , Cisplatino/síntese química , Cisplatino/química , Cisplatino/farmacologia , Cristalografia por Raios X , Ligação de Hidrogênio , Estrutura Molecular , Espectrofotometria Ultravioleta , Termogravimetria
8.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 3): m133, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23476483

RESUMO

The title compound, [Ag(C9H6NO)(C9H7NO)], crystallizes as a non-centrosymmetric polymorph. The structure was previously reported by Wu et al. [(2006). Acta Cryst. E62, m281-m282] in the centrosymmetric space group Pbcn. The Ag(I) ion displays a distorted tetra-hedral coordination geometry defined by two N and two O atoms from a neutral quinolin-8-ol ligand (HQ) and a deprotonated quinolin-8-olate anion (Q(-)). The dihedral angle between the two ligands is 47.0 (1)°. Strong O-H⋯O hydrogen bonds link the mol-ecules into a supra-molecular chain along the a-axis direction.

9.
J Bioinform Comput Biol ; 21(3): 2350011, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37325863

RESUMO

The P53 protein levels exhibit a series of pulses in response to DNA double-stranded breaks (DSBs). However, the mechanism regarding how damage strength regulates physical parameters of p53 pulses remains to be elucidated. This paper established two mathematical models translating the mechanism of p53 dynamics in response to DSBs; the two models can reproduce many results observed in the experiments. Based on the models, numerical analysis suggested that the interval between pulses increases as the damage strength decreases, and we proposed that the p53 dynamical system in response to DSBs is modulated by frequency. Next, we found that the ATM positive self-feedback can realize the system characteristic that the pulse amplitude is independent of the damage strength. In addition, the pulse interval is negatively correlated with apoptosis; the greater the damage strength, the smaller the pulse interval, the faster the p53 accumulation rate, and the cells are more susceptible to apoptosis. These findings advance our understanding of the mechanism of p53 dynamical response and give new insights for experiments to probe the dynamics of p53 signaling.


Assuntos
Reparo do DNA , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Dano ao DNA , Quebras de DNA de Cadeia Dupla , Transdução de Sinais
10.
Biomaterials ; 293: 121992, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603445

RESUMO

Sonodynamic therapy (SDT), a combination of low-intensity ultrasound with a sonosensitizer, has been explored as a promising alternative for cancer therapy. However, condensed extracellular matrix (ECM) resulting in poor perfusion and extreme hypoxia in solid tumor potentially compromises effective SDT. Herein, we develop a novel cleavable collagenase-assistant and O2-supplied nanosonosensitizer (FePO2@HC), which is embedded through fusing collagenase (CLG) and human serum albumin (HSA), followed by encapsulating Ferric protoporphyrin (FeP) and dioxygen. As a smart carrier, HSA is stimuli-responsive and collapsed by reduced glutathione (GSH) overexpressed in tumor, resulting to the release of the components in FePO2@HC. The released CLG acting as an artificial scissor, degrades the collagen fibers in tumor, thus, breaking tumor tissue and enhancing FePO2 accumulation in tumor inner with higher than that without CLG. Simultaneously, oxygen molecules are released from FePO2 in hypoxic environment and alleviate the tumor hypoxia. As a sonosensitizer, FeP is subsequently irradiated by ultrosound wave (US) and activates surrounding dioxygen to generate amount of singlet oxygen (1O2). Contributed from the ECM-degradation, such SDT-based nanosystem with increased sonosensitizer permeability and oxygen content highly improved the tumor inhibition efficacy without toxic effects. This study presents a new paradigm for ECM depletion-based strategy of deep-seated penetration, and will expand the nanomedicine application of metalloporphyrin sonosensitizers in SDT.


Assuntos
Metaloporfirinas , Nanopartículas , Neoplasias , Terapia por Ultrassom , Humanos , Neoplasias/terapia , Neoplasias/patologia , Oxigênio/metabolismo , Colagenases , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio
11.
ACS Nano ; 17(1): 421-436, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36573683

RESUMO

Glioblastoma (GBM) is the most devastating brain tumor and highly resistant to conventional chemotherapy. Herein, we introduce biomimetic nanosonosensitizer systems (MDNPs) combined with noninvasive ultrasound (US) actuation for orthotopic GBM-targeted delivery and sonodynamic-enhanced chemotherapy. MDNPs were fabricated with biodegradable and pH-sensitive polyglutamic acid (PGA) and the chemotherapeutic agent and sonosensitizer doxorubicin (DOX), camouflaged with human GBM U87 cell membranes. MDNPs presented homologous targeting accumulation and in vivo long-term circulation ability. They effectively passed through the blood-brain barrier (BBB) under US assistance and reached the orthotopic GBM site. MDNPs exhibited controllable US-elicited sonodynamic effect by generation of reactive oxygen species (ROS). ROS not only induced cancer cell apoptosis but also downregulated drug-resistance-related factors to disrupt chemoresistance and increase sensitivity to chemotherapy. The in vivo study of orthotopic GBM treatments further proved that MDNPs exhibited US-augmented synergistic antitumor efficacy and strongly prolonged the survival rate of mice. The use of low-dose DOX and the safety of US enabled repeated treatment (4 times) without obvious cardiotoxicity. This effective and safe US-enhanced chemotherapy strategy with the advantages of noninvasive brain delivery and high drug sensitivity holds great promise for deep-seated and drug-resistant tumors.


Assuntos
Glioblastoma , Nanopartículas , Humanos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Ultrassonografia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Medicamentos , Linhagem Celular Tumoral
12.
ACS Nano ; 17(7): 6410-6422, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988613

RESUMO

Micro-/nanorobots have attracted great interest in the field of drug delivery and treatment, while preparations for biocompatible robots are extremely challenging. Here, a self-driving yeast micro-/nanorobot (Cur@CaY-robot) is designed via dual biomineralization and acid catalysis of calcium carbonate (CaCO3). Inner nano-CaCO3 inside yeast cells (CaY) is biomineralized through cell respiration and provides nanoscaffolds for highly encapsulating curcumin (Cur). Meanwhile, the CaCO3 crystals outside yeast cells (outer-CaCO3) through uniaxial growth offer an asymmetric power source for self-propelled motility. The Cur@CaY-robot displays an efficient motion in gastric acid, with the potential for deep penetration to the thick gastric mucus, which significantly improves the accumulation of drug agents in the stomach wall tissue for robust gastritis therapy. More importantly, Ca2+ cations released from the Cur@CaY-robot also synergistically repair the gastric motility of gastritis mice. Such yeast micro-/nanorobots exhibit desirable biocompatibility and biodegradability with a good loading capacity for drugs. This work provides an idea for the design of micro-/nanorobots through an environmentally friendly biosynthesis strategy for active drug delivery and precise therapy.


Assuntos
Curcumina , Gastrite , Nanopartículas , Camundongos , Animais , Saccharomyces cerevisiae , Sistemas de Liberação de Medicamentos , Curcumina/química , Gastrite/tratamento farmacológico , Nanopartículas/química
13.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35055229

RESUMO

Sonodynamic therapy (SDT), as a novel cancer therapy strategy, might be a promising approach due to the depth-penetration property in tissue. Sonosensitizers are the key element for efficient SDT. However, the development of sonosensitizers with strong sonosensitization efficacy is still a significant challenge. Herein, an urchin-shaped copper-based metalloporphyrin liposome nanosystem (FA-L-CuPP) is constructed and identified as an excellent sonosensitizer. Under ultrasound (US) irradiation, FA-L-CuPP can be highly excited to generate several reactive oxygen species (ROS), such as singlet oxygen (1O2) and free radicals (⋅OH). The molecular orbital distribution calculations reveal that a strong intramolecular charge transfer might occur in the CuPP complex under US irradiation, which could afford enough energy to the surrounding O2 and H2O to concert 1O2, O2- and ⋅OH. Working as "ammunitions", the largely produced ROS can kill 4T1 tumor cells, effectively inhibiting tumor growth. This work provides an urchin-shaped nanosonosensitizer based on a copper complex, which might provide an idea to design a novel sonosensitizer for noninvasive and precise SDT antitumor applications.

14.
Biomaterials ; 281: 121341, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34995901

RESUMO

Although chimeric antigen receptor T (CAR T) cell immunotherapy has demonstrated remarkable success in clinical, therapeutic effects are still limited in solid tumor due to lack of activated T cell infiltration in immunosuppression of tumor microenvironment. Herein, we develop IL-12 nanostimulant-engineered CAR T cell (INS-CAR T) biohybrids for boosting antitumor immunity of CAR T cells via immunofeedback. As stimulating nanochaperone, IL-12-loaded human serum albumin (HSA) nanoparticles are effectively conjugated onto CAR T cells via bioorthogonal chemistry without influencing their antitumor capabilities. IL-12 is responsively released from INS-CAR T biohybrids in presence of the increased thiol groups on cell-surface triggered by tumor antigens. In return, released IL-12 obviously promotes the secretion of CCL5, CCL2 and CXCL10, which further selectively recruits and expands CD8+ CAR T cells in tumors. Ultimately, the immune-enhancing effects of IL-12 nanochaperone significantly boost CAR T cell antitumor capabilities, dramatically eliminated solid tumor and minimized unwanted side effects. Hence, immunofeedback INS-CAR T biohybrids, which include INS that serves as an intelligent 'nanochaperone', could provide a powerful tool for efficient and safe antitumor immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Interleucina-12 , Neoplasias/terapia , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Gene ; 770: 145337, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33278551

RESUMO

BACKGROUND: The myeloma overexpressed gene (MYEOV) plays a critical role in tumorigenesis in a variety of cancers. However, little is known of the prognosis and immune infiltration associated with MYEOV in non-small cell lung cancer (NSCLC). METHODS: We used several databases (Oncomine, TCGA, and GEO) to analysis the expression, prognosis, and immune infiltration, associated with MYEOV in NSCLC. We also used RT-qPCR and immunohistochemistry to investigate the expression and prognosis of MYEOV in NSCLC. RESULTS: Compared with normal tissues, high MYEOV expression in NSCLC was observed in Oncomine database, and was validated in the TCGA database. High MYEOV expression was significantly associated with different subtypes of NSCLC. Moreover, high MYEOV expression was closely related with a poorer overall survival in NSCLC in TCGA cohort, and was validated in GEO database. Simultaneously, high expression of MYEOV correlates with clinical relevance of NSCLC. Specifically, MYEOV expression was negatively correlated with infiltrating levels of tumor purity and B cells in LUAD. MYEOV expression was negatively correlated with infiltrating levels of tumor purity, and positively associated with CD8 + T cells, CD4 + T cells, dendritic cells, and neutrophils in LUSC. GSEA also revealed that high MYEOV expression were enriched in certain cancer-specific pathways. In addition, RT-qPCR and immunohistochemistry showed MYEOV expression was higher in NSCLC compared to the normal tissues. Finally, high MYEOV expression was closely related with poorer overall survival of NSCLC in an independent validation cohort. CONCLUSION: Our analyses indicate that MYEOV can be used as a prognostic biomarker for determining prognosis and immune infiltration in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Taxa de Sobrevida
16.
Adv Mater ; 33(50): e2100241, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34121236

RESUMO

Numerous clinical trials for cancer precision medicine research are limited due to the drug resistance, side effects, and low efficacy. Unsatisfactory outcomes are often caused by complex physiologic barriers and abnormal immune events in tumors, such as tumor target alterations and immunosuppression. Cell/bacteria-derived materials with unique bioactive properties have emerged as attractive tools for personalized therapy in cancer. Naturally derived bioactive materials, such as cell and bacterial therapeutic agents with native tropism or good biocompatibility, can precisely target tumors and effectively modulate immune microenvironments to inhibit tumors. Here, the recent advances in the development of cell/bacteria-based bioactive materials for immune modulation and precision therapy in cancer are summarized. Cell/bacterial constituents, including cell membranes, bacterial vesicles, and other active substances have inherited their unique targeting properties and antitumor capabilities. Strategies for engineering living cell/bacteria to overcome complex biological barriers and immunosuppression to promote antitumor efficacy are also summarized. Moreover, past and ongoing trials involving personalized bioactive materials and promising agents such as cell/bacteria-based micro/nano-biorobotics are further discussed, which may become another powerful tool for treatment in the near future.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Bactérias , Humanos , Terapia de Imunossupressão , Neoplasias/tratamento farmacológico , Medicina de Precisão , Microambiente Tumoral
17.
Biomaterials ; 269: 120639, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434714

RESUMO

Sonodynamic therapy (SDT) is a promising approach for tumor treatment because of the noninvasion, and future would be perfect while it activates systemic immune responses through deep penetration to effectively avoid tumor recurrence. Here, a multifunctional nanosonosensitizer system (FA-MnPs) is designed by encapsulating manganese-protoporphyrin (MnP) into folate-liposomes. The nanoparticles of FA-MnPs not only exhibit excellent depth-responsive SDT but also simultaneously activate SDT-mediated immune response. Under US irradiation, FA-MnPs show the high acoustic intensity in mimic tissue up to 8 cm depth and generate amount of singlet oxygen (1O2). Density functional theory (DFT) calculations reveal that metal coordination in MnP has enhanced the US response ability. The good depth-responsed SDT of FA-MnPs efficiently suppresses the growth of not only the superficial tumors but also the deep lesion in the triple-negative breast cancer (TNBC) mice model. Importantly, FA-MnPs-induced SDT further re-polarizes immunosuppressive M2 macrophages to antitumor M1 macrophages, and elicits immunogenic cell death (ICD) to activate dendritic cells, T lymphocytes, and natural killercells (NK), which consequently trigger the antitumor immune, contributing to the tumor growth inhibition. This study put forward an idea for curing deep-seated and metastatic tumors through noninvasively depth-irradiated immunogenic SDT by reasonably designing multifunctional sonosensitizers.


Assuntos
Neoplasias de Mama Triplo Negativas , Terapia por Ultrassom , Animais , Linhagem Celular Tumoral , Humanos , Lipossomos , Camundongos , Recidiva Local de Neoplasia , Protoporfirinas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
18.
Biomater Sci ; 10(1): 294-305, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34854851

RESUMO

Sonodynamic therapy (SDT) is a highly attractive therapy due to its advantages of being non-invasive and having good penetration depth, but tumor hypoxia extremely restricts its therapeutic effect. Here, a novel oxygen-enhanced hybrid protein nanosonosensitizer system (MnPcS@HPO) is designed using human serum albumin (HSA) and hemoglobin (Hb) through disulfide reconfiguration, followed by encapsulating Mn-phthalocyanine (MnPcS), aiming to develop O2 self-supplementing nanoparticles (NPs) for enhanced SDT. Benefitting from the O2-carrying ability of Hb and the tumor-targeting property of HSA, the MnPcS@HPO NPs are able to target tumor sites and alleviate hypoxia. Meanwhile, as a sonosensitizer, MnPcS is excited under US irradiation and activates dioxygen to generate abundant singlet oxygen (1O2), resulting in oxidative damage of tumor cells. Guided by photoacoustic and magnetic resonance dual-modal imaging, the MnPcS@HPO NPs alleviate tumor hypoxia and achieve good SDT efficiency for suppressing tumor growth. This work presents a novel insight into enhanced SDT antitumor activity through natural protein-mediated tumor microenvironment improvement.


Assuntos
Nanopartículas , Terapia por Ultrassom , Linhagem Celular Tumoral , Humanos , Hipóxia , Oxigênio
19.
Cancer Manag Res ; 12: 3537-3546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547191

RESUMO

OBJECTIVE: Diosmetin (DIOS) has been confirmed to possess anti-cancer effects in some types of tumors. However, it remains unclear whether DIOS exerts anti-cancer effects on liver cancer. Thus, our purpose was to observe the effect of DIOS on cell proliferation, cell apoptosis and cell cycle arrest in human liver cancer cells. MATERIALS AND METHODS: The cell viability of HepG2 and HCC-LM3 cells under different concentrations of DIOS was detected using MTT assay. The cell apoptosis and cell cycle arrest were analyzed by flow cytometry. The expression levels of apoptosis/cell cycle-related proteins including P53, Bcl-2, Bax, cleaved-caspase3, cleaved-caspase8, cleaved-PARP, Bak, cdc2, cyclinB1 and P21 were measured using Western blot. HepG2 cells were transfected by checkpoint kinase 1 (Chk1)-small interfering RNA (siRNA) and checkpoint kinase 2 (Chk2)-siRNA, respectively. After that, cell cycle was detected. RESULTS: DIOS significantly suppressed cell proliferation and induced cell apoptosis of HepG2 cells and HCC-LM3 cells. Moreover, DIOS promoted cell cycle arrest in G2/M phase. Western blot results showed that DIOS significantly suppressed the expression levels of Bcl-2, cdc2, cyclinB1, and promoted the expression levels of Bax, cleaved-caspase3, cleaved-caspase8, cleaved-PARP, Bak, P53, and P21. The G2/M phase arrest was observed in HepG2 cells transfected with Chk2-siRNA, while the G2/M phase arrest was not obvious in HepG2 cells transfected with Chk1-siRNA. CONCLUSION: Our findings revealed that DIOS could inhibit cell proliferation and promote cell apoptosis and cell cycle arrest in liver cancer. Furthermore, DIOS could induce G2/M cell cycle arrest in HepG2 cell via targeting Chk2.

20.
RSC Adv ; 10(13): 7879-7886, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35492168

RESUMO

In this study, gemini ammonium sulfobetaine (GAS) is designed and synthesized using isophorone diisocyanate connecting the ammonium sulfobetaines (AS) to obtain a viscoelastic surfactant exhibiting better viscosification and salt resistance. AS is prepared using the monomers of erucic acid, N-dimethyl-1,3-propanediamine, and 3-chloro-2-hydroxypropanesulfonic acid sodium. The properties of GAS and its proppant suspension as well as the gel-breaking mechanisms are investigated. The critical micelle concentration of GAS is 2.1 × 10-7 mol mL-1. GAS exhibits good salt resistance, and the viscosity is considerably high under acidic conditions. At 0.5 Hz, the storage modulus G' of GAS is 60, 120, and 640 mPa when the concentration is 0.3, 0.5, and 1.0 wt%, respectively. Its proppant suspension is optimal under acidic conditions. When the pH is high, the setting velocities are clearly observed to increase. When the pH is 12, the rate of decline is more than 50% after 200 min. Some of the worm-like micelles adsorbed on the proppant surface participate in the formation of the three-dimensional network, appropriately supporting the proppant-carrying performance. When potassium permanganate is used as the gel breaker, the characterization of the GAS gel-breaking liquid indicates that the double bond is disintegrrated by the gel breaker. Upon gel breaking, the average hydrodynamic radius of the GAS gel-breaking solution decreases to 176.2 nm from 492.3 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA