Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141799, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554876

RESUMO

Designing iron-based catalysts for Fenton-like reactions with peroxymonosulfate (PMS) as oxidants have attracted growing attentions. Herein, pyrite FeS2 supported on carbon spheres (FeS2@C) is synthesized by a facile low-temperature method. The FeS2@C/PMS system can degrade carbamazepine (CBZ) effectively in a wide pH range. Sulfate radicals (SO4·-), hydroxyl radicals (·OH), superoxide radical (O2·-), and singlet oxygen (1O2) are the responsible reactive oxygen species (ROSs) for CBZ degradation. Moreover, in the simulated fixed-bed reactor, the FeS2@C/PMS system can maintain a high CBZ removal ratio of >95% for than 8 h, exhibiting its excellent stability. The outstanding performance of FeS2@C/PMS system is attributed to the presence of carbon spheres and lattice S2-, which together promote the Fe(III)/Fe(II) redox cycle. The FeS2@C is a promising catalyst due to its facile synthesis, low cost, high efficiency, and excellent stability to activate PMS for organics degradation.


Assuntos
Carbono , Compostos Férricos , Sulfetos , Ferro , Peróxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA