Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Physiol ; 191(1): 747-771, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315103

RESUMO

Plants often simultaneously experience combined stresses rather than a single stress, causing more serious damage, but the underlying mechanisms remain unknown. Here, we identified the stress-induced IbNAC3 from sweet potato (Ipomoea batatas) as a nucleus-localized transcription activator. IbNAC3 contains a unique activation domain whose MKD sequence confers transactivation activities to multiple other TFs and is essential for the activated expression of downstream target genes. Ectopic expression of IbNAC3 conferred tolerance to single and combined salt and drought stresses in Arabidopsis (Arabidopsis thaliana), and a group of NAM, ATAF1/2, and CUC2 (NAC) TFs, including ANAC011, ANAC072, ANAC083, ANAC100, and NAP, interacted with IbNAC3, and the specific domains responsible for each interaction varied. Intriguingly, IbNAC3 repressed the interaction among the five NACs, and knockout or mutation of ANAC011 and ANAC072 dramatically impaired combined stress tolerance. IbNAC3-ANAC072 and IbNAC3-NAP modules synergistically activated the MICROTUBULE-RELATED E3 LIGASE57 (MREL57) gene. Consistently, mutation of MREL57 and overexpression of WAVE-DAM-PENED2-LIKE7, encoding a target protein of MREL57, both remarkably impaired combined stress tolerance. Moreover, transgenic plants displayed abscisic acid (ABA) hyposensitivity by directly promoting the transcription of ENHANCED RESPONSE TO ABA 1, a key negative regulator of ABA signaling. The data unravel the unique IbNAC3 TF functions as a pivotal component in combined stress tolerance by integrating multiple regulatory events and ubiquitin pathways, which is essential for developing high-tolerant plants in natural environments.


Assuntos
Arabidopsis , Ipomoea batatas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Cloreto de Sódio/farmacologia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003642

RESUMO

Black rot disease, caused by Ceratocystis fimbriata Ellis & Halsted, severely affects both plant growth and post-harvest storage of sweet potatoes. Invertase (INV) enzymes play essential roles in hydrolyzing sucrose into glucose and fructose and participate in the regulation of plant defense responses. However, little is known about the functions of INV in the growth and responses to black rot disease in sweet potato. In this study, we identified and characterized an INV-like gene, named IbINV, from sweet potato. IbINV contained a pectin methylesterase-conserved domain. IbINV transcripts were most abundant in the stem and were significantly induced in response to C. fimbriata, salicylic acid, and jasmonic acid treatments. Overexpressing IbINV in sweet potato (OEV plants) led to vigorous growth and high resistance to black rot disease, while the down-regulation of IbINV by RNA interference (RiV plants) resulted in reduced plant growth and high sensitivity to black rot disease. Furthermore, OEV plants contained a decreased sucrose content and increased hexoses content, which might be responsible for the increased INV activities; not surprisingly, RiV plants showed the opposite effects. Taken together, these results indicate that IbINV positively regulates plant growth and black rot disease resistance in sweet potato, mainly by modulating sugar metabolism.


Assuntos
Ascomicetos , Ipomoea batatas , Ascomicetos/fisiologia , Ipomoea batatas/genética , Ceratocystis , Sacarose/farmacologia
3.
BMC Genomics ; 22(1): 140, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639840

RESUMO

BACKGROUND: Sweetpotato (Ipomoea batatas (L.) Lam.) serves as an important food source for human beings. ß-galactosidase (bgal) is a glycosyl hydrolase involved in cell wall modification, which plays essential roles in plant development and environmental stress adaptation. However, the function of bgal genes in sweetpotato remains unclear. RESULTS: In this study, 17 ß-galactosidase genes (Ibbgal) were identified in sweetpotato, which were classified into seven subfamilies using interspecific phylogenetic and comparative analysis. The promoter regions of Ibbgals harbored several stress, hormone and light responsive cis-acting elements. Quantitative real-time PCR results displayed that Ibbgal genes had the distinct expression patterns across different tissues and varieties. Moreover, the expression profiles under various hormonal treatments, abiotic and biotic stresses were highly divergent in leaves and root. CONCLUSIONS: Taken together, these findings suggested that Ibbgals might play an important role in plant development and stress responses, which provided evidences for further study of bgal function and sweetpotato breeding.


Assuntos
Ipomoea batatas , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Humanos , Ipomoea batatas/genética , Filogenia , Melhoramento Vegetal , beta-Galactosidase
4.
Genomics ; 111(5): 1006-1017, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29792923

RESUMO

Sweetpotato (Ipomoea batatas L.) is a globally important economic food crop. It belongs to Convolvulaceae family and origins in the tropics; however, sweetpotato is sensitive to cold stress during storage. In this study, we performed transcriptome sequencing to investigate the sweetpotato response to chilling stress during storage. A total of 110,110 unigenes were generated via high-throughput sequencing. Differentially expressed genes (DEGs) analysis showed that 18,681 genes were up-regulated and 21,983 genes were down-regulated in low temperature condition. Many DEGs were related to the cell membrane system, antioxidant enzymes, carbohydrate metabolism, and hormone metabolism, which are potentially associated with sweetpotato resistance to low temperature. The existence of DEGs suggests a molecular basis for the biochemical and physiological consequences of sweetpotato in low temperature storage conditions. Our analysis will provide a new target for enhancement of sweetpotato cold stress tolerance in postharvest storage through genetic manipulation.


Assuntos
Resposta ao Choque Frio , Genes de Plantas , Ipomoea batatas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma
5.
J Exp Bot ; 70(4): 1389-1405, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30689932

RESUMO

Polyploids generally possess superior K+/Na+ homeostasis under saline conditions compared with their diploid progenitors. In this study, we identified the physiological mechanisms involved in the ploidy-related mediation of K+/Na+ homeostasis in the roots of diploid (2x) and hexaploid (6x; autohexaploid) Ipomoea trifida, which is the closest relative of cultivated sweet potato. Results showed that 6x I. trifida retained more K+ and accumulated less Na+ in the root and leaf tissues under salt stress than 2x I. trifida. Compared with its 2x ancestor, 6x I. trifida efficiently prevents K+ efflux from the meristem root zone under salt stress through its plasma membrane (PM) K+-permeable channels, which have low sensitivity to H2O2. Moreover, 6x I. trifida efficiently excludes Na+ from the elongation and mature root zones under salt stress because of the high sensitivity of PM Ca2+-permeable channels to H2O2. Our results suggest the root-zone-specific sensitivity to H2O2 of PM K+- and Ca2+-permeable channels in the co-ordinated control of K+/Na+ homeostasis in salinized 2x and 6x I. trifida. This work provides new insights into the improved maintenance of K+/Na+ homeostasis of polyploids under salt stress.


Assuntos
Diploide , Peróxido de Hidrogênio/farmacologia , Ipomoea/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/fisiologia , Poliploidia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Homeostase , Ipomoea/genética , Proteínas de Plantas/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Salinidade
6.
BMC Genet ; 20(1): 41, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023242

RESUMO

BACKGROUND: The basic leucine zipper (bZIP) transcription factor is one of the most abundant and conserved transcription factor families. In addition to being involved in growth and development, bZIP transcription factors also play an important role in plant adaption to abiotic stresses. RESULTS: A total of 41 bZIP genes that encode 66 proteins were identified in Ipomoea trifida. They were distributed on 14 chromosomes of Ipomoea trifida. Segmental and tandem duplication analysis showed that segmental duplication played an important role in the ItfbZIP gene amplification. ItfbZIPs were divided into ten groups (A, B, C, D, E, F, G, H, I and S groups) according to their phylogenetic relationships with Solanum lycopersicum and Arabidopsis thaliana. The regularity of the exon/intron numbers and distributions is consistent with the group classification in evolutionary tree. Prediction of the cis-acting elements found that promoter regions of ItfbZIPs harbored several stress responsive cis-acting elements. Protein three-dimensional structural analysis indicated that ItfbZIP proteins mainly consisted of α-helices and random coils. The gene expression pattern from transcriptome data and qRT-PCR analysis showed that ItfbZIP genes expressed with a tissue-specific manner and differently expressed under various abiotic stresses, suggesting that the ItfbZIPs were involved in stress response and adaption in Ipomoea trifida. CONCLUSIONS: Genome-wide identification, gene structure, phylogeny and expression analysis of bZIP gene in Ipomoea trifida supplied a solid theoretical foundation for the functional study of bZIP gene family and further facilitated the molecular breeding of sweet potato.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Ipomoea/genética , Ipomoea/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Redes Reguladoras de Genes , Genoma de Planta , Ipomoea/classificação , Família Multigênica , Filogenia , Melhoramento Vegetal
7.
BMC Plant Biol ; 17(1): 139, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806972

RESUMO

BACKGROUND: Sweetpotato (Ipomoea batatas [L.] Lam) is suitable for growth on marginal lands due to its abiotic stress tolerance. However, severe environmental conditions including low temperature pose a serious threat to the productivity and expanded cultivation of this crop. In this study, we aimed to develop sweetpotato plants with enhanced tolerance to temperature stress. RESULTS: P3 proteins are plant-specific ribosomal P-proteins that act as both protein and RNA chaperones to increase heat and cold stress tolerance in Arabidopsis. Here, we generated transgenic sweetpotato plants expressing the Arabidopsis ribosomal P3 (AtP3B) gene under the control of the CaMV 35S promoter (referred to as OP plants). Three OP lines (OP1, OP30, and OP32) were selected based on AtP3B transcript levels. The OP plants displayed greater heat tolerance and higher photosynthesis efficiency than wild type (WT) plants. The OP plants also exhibited enhanced low temperature tolerance, with higher photosynthesis efficiency and less membrane permeability than WT plants. In addition, OP plants had lower levels of hydrogen peroxide and higher activities of antioxidant enzymes such as peroxidase and catalase than WT plants under low temperature stress. The yields of tuberous roots and aerial parts of plants did not significantly differ between OP and WT plants under field cultivation. However, the tuberous roots of OP transgenic sweetpotato showed improved storage ability under low temperature conditions. CONCLUSIONS: The OP plants developed in this study exhibited increased tolerance to temperature stress and enhanced storage ability under low temperature compared to WT plants, suggesting that they could be used to enhance sustainable agriculture on marginal lands.


Assuntos
Aclimatação/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ipomoea batatas/fisiologia , Proteínas Ribossômicas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Proteínas Ribossômicas/metabolismo , Estresse Fisiológico/genética , Termotolerância/genética
8.
Molecules ; 22(8)2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786950

RESUMO

Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, exhibits beneficial effects on metabolic syndrome. Sustained inflammation plays a crucial role in the pathogenesis of metabolic syndrome. Here we explored the effects of PSPC on high-fat diet (HFD)-induced hepatic inflammation and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + PSPC group, and PSPC group. PSPC was administered by daily oral gavage at doses of 700 mg/kg/day for 20 weeks. Nicotinamide riboside (NR) was used to increase NAD⁺ levels. Our results showed that PSPC effectively ameliorated obesity and liver injuries in HFD-fed mice. Moreover, PSPC notably blocked hepatic oxidative stress in HFD-treated mice. Furthermore, PSPC dramatically restored NAD⁺ level to abate endoplasmic reticulum stress (ER stress) in HFD-treated mouse livers, which was confirmed by NR treatment. Consequently, PSPC remarkably suppressed the nuclear factor-κB (NF-κB) p65 nuclear translocation and nucleotide oligomerization domain protein1/2 (NOD1/2) signaling in HFD-treated mouse livers. Thereby, PSPC markedly diminished the NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation, ultimately lowering the expressions of inflammation-related genes in HFD-treated mouse livers. In summary, PSPC protected against HFD-induced hepatic inflammation by boosting NAD⁺ level to inhibit NLRP3 inflammasome activation.


Assuntos
Anti-Inflamatórios/farmacologia , Hepatite Animal/tratamento farmacológico , Hepatite Animal/metabolismo , Inflamassomos/metabolismo , Ipomoea batatas/química , NAD/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pigmentos Biológicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Antocianinas/química , Antocianinas/farmacologia , Anti-Inflamatórios/química , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatite Animal/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , NF-kappa B/metabolismo , Proteínas Adaptadoras de Sinalização NOD/genética , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Estresse Oxidativo/efeitos dos fármacos , Pigmentos Biológicos/química , Extratos Vegetais/química , Transporte Proteico
10.
Microbiol Res ; 281: 127624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295680

RESUMO

Cell wall integrity (CWI) is crucial for the growth, development, and host invasion of pathogenic fungi. The APSES transcription factor Swi6 in fungi plays a role in mediating cell wall integrity through the mitogen-activated protein kinase (MAPK) signaling pathway. Ceratocystis fimbriata is a notorious pathogenic fungus responsible for causing black rot in sweet potatoes. In this study, an orthologous APSES transcription factor Swi6 (CfSwi6) downstream of the CWI regulatory pathway in C. fimbriata was characterized. Deletion of CfSWI6 leads to impaired hyphal development, conidiation, and compromised cell wall integrity, resulting in a significant reduction in virulence. Transcriptome analysis revealed the involvement of CfSWI6 in various pathways, including the MAPK pathway, DNA synthesis and stress response. ChIP-seq data provided predictions of potential target genes regulated by CfSwi6. Through yeast one-hybrid, we confirmed the direct binding of CfSwi6 to the promoter of the chitin synthetase gene. In summary, these findings indicated that CfSwi6 plays an important role in the growth, development, and pathogenicity of C. fimbriata. This study provides new insights into the pathogenic mechanism of C. fimbriata in sweet potato and inspires potential strategies to control sweet potato black rot.


Assuntos
Ceratocystis , Saccharomyces cerevisiae , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética , Saccharomyces cerevisiae/genética , Parede Celular/metabolismo
11.
Microorganisms ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38004677

RESUMO

Ceratocystis fimbriata (C. fimbriata) is a notorious pathogenic fungus that causes sweet potato black rot disease. The APSES transcription factor Swi6 in fungi is located downstream of the cell wall integrity (CWI)-mitogen-activated protein kinase (MAPK) signaling pathway and has been identified to be involved in cell wall integrity and virulence in several filamentous pathogenic fungi. However, the specific mechanisms by which Swi6 regulates the growth and pathogenicity of plant pathogenic fungi remain elusive. In this study, the SWI6 deletion mutants and complemented strains of C. fimbriata were generated. Deletion of Swi6 in C. fimbriata resulted in aberrant growth patterns. Pathogenicity assays on sweet potato storage roots revealed a significant decrease in virulence in the mutant. Non-targeted metabolomic analysis using LC-MS identified a total of 692 potential differentially accumulated metabolites (PDAMs) in the ∆Cfswi6 mutant compared to the wild type, and the results of KEGG enrichment analysis demonstrated significant enrichment of PDAMs within various metabolic pathways, including amino acid metabolism, lipid metabolism, nucleotide metabolism, GPI-anchored protein synthesis, and ABC transporter metabolism. These metabolic pathways were believed to play a crucial role in mediating the growth and pathogenicity of C. fimbriata through the regulation of CWI. Firstly, the deletion of the SWI6 gene led to abnormal amino acid and lipid metabolism, potentially exacerbating energy storage imbalance. Secondly, significant enrichment of metabolites related to GPI-anchored protein biosynthesis implied compromised cell wall integrity. Lastly, disruption of ABC transport protein metabolism may hinder intracellular transmembrane transport. Importantly, this study represents the first investigation into the potential regulatory mechanisms of SWI6 in plant filamentous pathogenic fungi from a metabolic perspective. The findings provide novel insights into the role of SWI6 in the growth and virulence of C. fimbriata, highlighting its potential as a target for controlling this pathogen.

12.
Food Chem ; 408: 135213, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527924

RESUMO

Root rot caused by Fusarium solani is one of major postharvest diseases limiting sweet potato production. Antifungal effect and possible mode of action of cinnamaldehyde (CA) against F. solani were investigated. CA concentration of 0.075 g/L inhibited conidial viability of F. solani. CA vapor of 0.3 g/L in air completely controlled the F. solani development in sweet potatoes during storage for 10 days at 28 °C, and protected soluble sugar and starch in the flesh from depletion by the fungus. Further results demonstrated that CA induced reduction in mitochondrial membrane potential (Δψm), ROS accumulation, and cell apoptosis characterized by DNA fragmentation in F. solani. Moreover, CA facilitated decomposition of mitochondria-specific cardiolipin (CL) into its catabolites by the catalytic action of phospholipases. Altogether, the results revealed a specific antifungal mechanism of CA against F. solani, and suggest that CA holds promise as a preservative for postharvest preservation of sweet potato.


Assuntos
Fusarium , Ipomoea batatas , Antifúngicos/farmacologia , Ipomoea batatas/microbiologia
13.
Int J Biol Macromol ; 226: 397-409, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36464183

RESUMO

tRNA-derived fragments (tRFs) are a class of regulatory non-coding RNAs that play essential biological functions in cancer and stress-induced diseases. Several lines of evidence suggest that 5'-tRF-GlyGCC participates in tumor progression; however, its molecular mechanisms remain unclear. In this study, we explored the function of 5'-tRF-GlyGCC in breast cancer (BC) progression and studied the related potential molecular mechanisms. 5'-tRF-GlyGCC expression increased in human BC, and it promoted the proliferation, migration, and invasion of BC cells in vitro and tumor growth and metastasis in vivo. 5'-tRF-GlyGCC was found for the first time to bind directly to fat mass and obesity-associated proteins, and increase the activity of FTO demethylase, reducing eIF4G1 methylation, inhibiting autophagy, and promoting BC proliferation and metastasis. These findings suggest that 5'-tRF-GlyGCC might be a therapeutic target for treating BC.


Assuntos
Neoplasias da Mama , Melanoma , Neoplasias Cutâneas , Humanos , Feminino , Neoplasias da Mama/patologia , Obesidade/complicações , Obesidade/genética , RNA de Transferência/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Melanoma Maligno Cutâneo
14.
Foods ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959029

RESUMO

Sweet potato vine tips are abundant in chlorogenic acid (CGA). In this study, CGA was extracted from vegetable and conventional sweet potato vine tips using ethanol, followed by subsequent purification of the extract through a series of sequential steps. Over 4 g of the purified product was obtained from 100 g of sweet potato vine tip powder, producing more than 85% of purified CGA. The LC-MS analysis of all samples indicated that 4-CQA was the predominant isomer in both sweet potato cultivars. Significant variations of p-coumaroyl quinic acids, feruloyl quinic acids, dicaffeoyl quinic acids, and tricaffeoyl quinic acid were identified, whereas the mono-caffeoyl quinic acids did not vary when the two sweet potato varieties were compared. Compared to conventional sweet potatoes, vegetable sweet potatoes exhibit a high negative correlation between 4-CQA and 5-pCoQA, while showing a high positive correlation between 3,5-CQA and 3-pCoQA. A series of principal component analyses (PCA) using CGA isomers enables a clear differentiation between vine tips derived from vegetable and conventional sweet potatoes. The model of linear discriminant analysis, based on the characteristic CGA, achieved a 100% accuracy rate in distinguishing between vegetable and conventional sweet potatoes. The high purity of sweet potato CGA (SCGA) exhibited potent anti-breast cancer activity. The results demonstrated that SCGA significantly suppressed the clonogenicity of MB231 and MCF7 cells, and impeded the migratory, invasive, and lung metastatic potential of MB231 cells.

15.
J Agric Food Chem ; 71(41): 15073-15086, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37805933

RESUMO

Chlorogenic acid (CGA) is a naturally occurring plant component with the purpose of alleviating hepatic lipid deposition biological activities. However, the molecular mechanism behind this ability of CGA remains unelucidated. Consequently, we investigated the effect of CGA on hepatic lipid accumulation and elucidated its underlying mechanism. Our study used a high-fat diet (HFD)-induced mouse nonalcoholic fatty liver disease (NAFLD) model in mice to investigate the impact of CGA on hepatic lipid accumulation. The results revealed that the oral administration of CGA can ameliorate HFD-induced hepatic lipid deposition, reduce the NAFLD activity score (NAS), enhance liver autophagy, mitigate liver cell structural damage, and inhibit the MAPK/ERK signaling pathway. Meanwhile, CGA treatment increased the LC3B:LC3B ratio and decreased P62 expression. Cell experiments demonstrated that autophagy contributes to the ability of CGA to alleviate lipid deposition. Further analysis revealed that CGA specifically binds to ALKBH5 and inhibits its m6A methylase activity. The inhibition of ALKBH5 activity significantly reduces AXL mRNA stability in liver cells. The AXL downregulation resulted in suppressing ERK signaling pathway activation. Overall, this study demonstrates that CGA can alleviate hepatic steatosis by regulating autophagy through the inhibition of ALKBH5 activity inhibition.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Clorogênico/metabolismo , Fígado/metabolismo , Autofagia , Lipídeos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
16.
PLoS One ; 17(3): e0264847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35271628

RESUMO

Sweetpotato (Ipomoea batatas [L.] Lam) is a widely cultivated food crop with generally good adaptability. However, drought stress can cause a significant decline in yield. To reveal the response mechanism of sweetpotato to drought stress, an integrated physiological, proteomic and metabolomic investigation was conducted in leaves of two sweetpotato varieties with differing responses to drought stress, drought-resistant Wanzishu56 (WZ56) and a more sensitive variety, Ningzishu2(NZ2). Physiological analysis showed that the variety with better drought tolerance had superior performance in water retention capacity and photosynthetic efficiency under drought stress. A total of 1140 proteins were identified within the two varieties. Among them, 192 differentially expressed proteins were detected under drought conditions, including 97 that were up-regulated. Functional analysis showed that these up-regulated proteins were primarily involved in photosynthesis, reactive oxygen species metabolism, organonitrogen compound metabolism, and precursor metabolite catabolism and energy generation. All differentially expressed proteins in WZ56 that were involved in photosynthetic and glutathione metabolic processes were up-regulated. Enzyme activity assays were carried out to validate the proteomics data. Moreover, 75 metabolites were found to have a higher expression level in WZ56 than NZ2 under drought stress. The higher concentration of carbohydrates, amino acids, flavonoids and organic acids found in drought-stressed leaves of WZ56 suggested that these metabolites may improve the drought resistance of sweetpotato. This study uncovered specific-proteins and metabolites associated with drought resistance, providing new insights into the molecular mechanisms of drought tolerance in sweetpotato.


Assuntos
Secas , Ipomoea batatas , Regulação da Expressão Gênica de Plantas , Ipomoea batatas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Estresse Fisiológico
17.
Genes (Basel) ; 13(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35327958

RESUMO

MicroRNA319 (miR319) plays a key role in plant growth, development, and multiple resistance by repressing the expression of targeted TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) genes. Two members, IbmiR319a and IbmiR319c, were discovered in the miR319 gene family in sweet potato (Ipomoea batatas [L.] Lam). Here, we focused on the biological function and potential molecular mechanism of the response of IbmiR319a to drought stress in sweet potato. Blocking IbmiR319a in transgenic sweet potato (MIM319) resulted in a slim and tender phenotype and greater sensitivity to drought stress. Microscopic observations revealed that blocking IbmiR319a decreased the cell width and increased the stomatal distribution in the adaxial leaf epidermis, and also increased the intercellular space in the leaf and petiole. We also found that the lignin content was reduced, which led to increased brittleness in MIM319. Quantitative real-time PCR showed that the expression levels of key genes in the lignin biosynthesis pathway were much lower in the MIM319 lines than in the wild type. Ectopic expression of IbmiR319a-targeted genes IbTCP11 and IbTCP17 in Arabidopsis resulted in similar phenotypes to MIM319. We also showed that the expression of IbTCP11 and IbTCP17 was largely induced by drought stress. Transcriptome analysis indicated that cell growth-related pathways, such as plant hormonal signaling, were significantly downregulated with the blocking of IbmiR319a. Taken together, our findings suggest that IbmiR319a affects plant architecture by targeting IbTCP11/17 to control the response to drought stress in sweet potato.


Assuntos
Ipomoea batatas , Secas , Ipomoea batatas/genética , Lignina/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética
18.
Mol Plant Pathol ; 23(1): 104-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633749

RESUMO

Sweet potato (Ipomoea batatas) is one of the most important crops in the world, and its production rate is mainly decreased by the sweet potato virus disease (SPVD) caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus. However, methods for improving SPVD resistance have not been established. Thus, this study aimed to enhance SPVD resistance by targeting one of its important pathogenesis-related factors (i.e., SPCSV-RNase3) by using the CRISPR-Cas13 technique. First, the RNA targeting activity of four CRISPR-Cas13 variants were compared using a transient expression system in Nicotiana benthamiana. LwaCas13a and RfxCas13d had more efficient RNA and RNA virus targeting activity than PspCas13b and LshCas13a. Driven by the pCmYLCV promoter for the expression of gRNAs, RfxCas13d exhibited higher RNA targeting activity than that driven by the pAtU6 promoter. Furthermore, the targeting of SPCSV-RNase3 using the LwaCas13a system inhibited its RNA silencing suppressor activity and recovered the RNA silencing activity in N. benthamiana leaf cells. Compared with the wild type, transgenic N. benthamiana plants carrying an RNase3-targeted LwaCas13a system exhibited enhanced resistance against turnip mosaic virus TuMV-GFP and cucumber mosaic virus CMV-RNase3 co-infection. Moreover, transgenic sweet potato plants carrying an RNase3-targeted RfxCas13d system exhibited substantially improved SPVD resistance. This method may contribute to the development of SPVD immune germplasm and the enhancement of sweet potato production in SPVD-prevalent regions.


Assuntos
Ipomoea batatas , Viroses , Sistemas CRISPR-Cas/genética , Ipomoea batatas/genética , Doenças das Plantas/genética , Interferência de RNA
19.
Front Plant Sci ; 12: 686698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34426735

RESUMO

Plant-specific TCP transcription factors play vital roles in the controlling of growth, development, and the stress response processes. Extensive researches have been carried out in numerous species, however, there hasn't been any information available about TCP genes in sweet potato (Ipomoea batatas L.). In this study, a genome-wide analysis of TCP genes was carried out to explore the evolution and function in sweet potato. Altogether, 18 IbTCPs were identified and cloned. The expression profiles of the IbTCPs differed dramatically in different organs or different stages of leaf development. Furthermore, four CIN-clade IbTCP genes contained miR319-binding sites. Blocking IbmiR319 significantly increased the expression level of IbTCP11/17 and resulted in a decreased photosynthetic rate due to the change in leaf submicroscopic structure, indicating the significance of IbmiR319-targeted IbTCPs in leaf anatomical morphology. A systematic analyzation on the characterization of the IbTCPs together with the primary functions in leaf anatomical morphology were conducted to afford a basis for further study of the IbmiR319/IbTCP module in association with leaf anatomical morphology in sweet potato.

20.
Pest Manag Sci ; 77(10): 4497-4509, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34037312

RESUMO

BACKGROUND: Chemosensory proteins (CSPs) play important roles in chemical communication, but their precise physiological functions are still unclear. Cylas formicarius is the most serious pest attacking sweet potato around the world. At present, there is no effective way to control this pest. RESULTS: Our results showed that CforCSP1, 5 and 6 genes were highly expressed in the antennae of both sexes of C. formicarius. In addition, results from a fluorescence competitive binding assay showed that the CforCSP1, 5 and 6 proteins had high binding affinities for 17 plant volatiles including eight host plant volatiles. This indicated that the three proteins may be involved in the detection of host plant volatiles. Furthermore, results from four-arm olfactometer bioassays showed that there was a significant tendency for C. formicarius to be attracted to eucalyptol, ß-carotene, benzaldehyde, vanillin and phenethyl alcohol, while it was repelled by ß-ionone. Finally, the levels of expression of the three CforCSPs in C. formicarius were successfully inhibited by RNA interference (RNAi). Behavioral experiments showed that CforCSP1, 5 and 6-deficient C. formicarius were partly anosmic to ß-cyclocitral, benzaldehyde, octyl aldehyde, and ß-ionone and exhibited a reduced ability to locate the host plant volatiles ß-carotene and vanillin. CONCLUSION: Our data suggest that CforCSP1, 5 and 6 likely are involved in the chemical communication between C. formicarius and host plant volatiles, which may play pivotal roles in oviposition and feeding site preferences. More importantly, these results could provide information for the development of monitoring and push-pull strategies for the control of C. formicarius. © 2021 Society of Chemical Industry.


Assuntos
Besouros , Ipomoea batatas , Gorgulhos , Animais , Oviposição , Percepção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA