Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2302761120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109527

RESUMO

For degradation of ß-lactam antibiotics pollution in waters, the strained ß-lactam ring is the most toxic and resistant moiety to biodegrade and redox-chemically treat among their functional groups. Hydrolytically opening ß-lactam ring with Lewis acid catalysts has long been recognized as a shortcut, but at room temperature, such hydrolysis is too slow to be deployed. Here, we found when Cu2+ was immobilized on imine-linked COF (covalent organic framework) (Cu2+/Py-Bpy-COF, Cu2+ load is 1.43 wt%), as-prepared composite can utilize the light irradiation (wavelength range simulated sunlight) to in situ heat anchored Cu2+ Lewis acid sites through an excellent photothermal conversion to open the ß-lactam ring followed by a desired full-decarboxylation of hydrolysates. Under 1 W/cm2 simulated sunlight, Cu2+/Py-Bpy-COF powders placed in a microfiltration membrane rapidly cause a temperature rising even to ~211.7 °C in 1 min. It can effectively hydrolyze common ß-lactam antibiotics in waters and even antibiotics concentration is as high as 1 mM and it takes less than 10 min. Such photo-heating hydrolysis rate is ~24 times as high as under dark and ~2 times as high as Cu2+ homogenous catalysis. Our strategy significantly decreases the interference from generally coexisting common organics in waters and potential toxicity concerns of residual carboxyl groups in hydrolysates and opens up an accessible way for the settlement of ß-lactam antibiotics pollutants by the only energy source available, the sunlight.


Assuntos
Poluentes Ambientais , Antibióticos beta Lactam , Temperatura Alta , Domínio Catalítico , Ácidos de Lewis , Antibacterianos/metabolismo , beta-Lactamas , Monobactamas
2.
Small ; 20(8): e2305589, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828633

RESUMO

In consideration of energy economization and light quality, concurrently attaining high external quantum efficiency (ηext ) and high color rendering index (CRI) is of high significance for the commercialization of hybrid white organic light-emitting diodes (WOLEDs) but is challenging. Herein, a blue luminescent molecule (2PCz-XT) consisting of a xanthone acceptor and two 3,6-diphenylcarbazole donors is prepared, which exhibits strong delayed fluorescence, short delayed fluorescence lifetime, and excellent electroluminescence property, and can sensitize green, orange, and red phosphorescent emitters efficiently. By employing 2PCz-XT as sensitizer and phosphorescent emitters as dopants, efficient two-color and three-color WOLED architectures with ultra-thin phosphorescent emitting layers (EMLs) are proposed and constructed. By incorporating a thin interlayer to modulate exciton recombination zone and reduce exciton loss, high-performance three-color hybrid WOLEDs are finally achieved, providing a high ηext of 26.8% and a high CRI value 83 simultaneously. Further configuration optimization realizes a long device operational lifetime. These WOLEDs with ultra-thin phosphorescent EMLs are among the state-of-the-art hybrid WOLEDs in the literature, demonstrating the success and applicability of the proposed device design for developing robust hybrid WOLEDs with superb efficiency and color quality.

3.
Chemistry ; 30(14): e202303990, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060300

RESUMO

Red luminescent materials are essential components for full color display and white lightening based on organic light-emitting diode (OLED) technology, but the extension of emission color towards red or deep red region generally leads to decreased photoluminescence and electroluminescence efficiencies. Herein, we wish to report two new luminescent molecules (2CNDPBPPr-TPA and 4CNDPBPPr-TPA) consisting of cyano-substituted 11,12-diphenyldipyrido[3,2-a:2',3'-c]phenazine acceptors and triphenylamine donors. As the increase of cyano substituents, the emission wavelength is greatly red-shifted and the reverse intersystem crossing process is promoted, resulting in strong red delayed fluorescence. Meanwhile, due to the formation of intramolecular hydrogen bonds, the molecular structures become rigidified and planarized, which brings about large horizontal dipole ratios. As a result, 2CNDPBPPr-TPA and 4CNDPBPPr-TPA can perform as emitters efficiently in OLEDs, furnishing excellent external quantum efficiencies of 28.8 % at 616 nm and 20.2 % at 648 nm, which are significantly improved in comparison with that of the control molecule without cyano substituents. The findings in this work demonstrate that the introduction of cyano substituents to the acceptors of delayed fluorescence molecules could be a facile and effective approach to explore high-efficiency red or deep red delayed fluorescence materials.

4.
Angew Chem Int Ed Engl ; : e202405418, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686901

RESUMO

Purely organic molecules with room-temperature phosphorescence (RTP) are potential luminescent materials with high exciton utilization for organic light-emitting diodes (OLEDs), but those exhibiting superb electroluminescence (EL) performances are rarely explored, mainly due to their long phosphorescence lifetimes. Herein, a robust purely organic RTP molecule, 3,6-bis(5-phenylindolo[3,2-a]carbazol-12(5H)-yl)-xanthen-9-one (3,2-PIC-XT), is developed. The neat film of 3,2-PIC-XT shows strong green RTP with a very short lifetime (2.9 µs) and a high photoluminescence quantum yield (72 %), and behaviors balanced bipolar charge transport. The RTP nature of 3,2-PIC-XT is validated by steady-state and transient absorption and emission spectroscopies, and the working mechanism is deciphered by theoretical simulation. Non-doped multilayer OLEDs using thin neat films of 3,2-PIC-XT furnish an outstanding external quantum efficiency (EQE) of 24.91 % with an extremely low roll-off (1.6 %) at 1000 cd m-2. High-performance non-doped top-emitting and tandem OLEDs are also achieved, providing remarkable EQEs of 24.53 % and 42.50 %, respectively. Delightfully, non-doped simplified OLEDs employing thick neat films of 3,2-PIC-XT are also realized, furnishing an excellent EQE of 17.79 % and greatly enhanced operational lifetime. The temperature-dependent and transient EL spectroscopies demonstrate the electrophosphorescence attribute of 3,2-PIC-XT. These non-doped OLEDs are the best devices based on purely organic RTP materials reported so far.

5.
Angew Chem Int Ed Engl ; : e202407502, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721850

RESUMO

Currently, much research effort has been devoted to improving the exciton utilization efficiency and narrowing the emission spectra of ultraviolet (UV) fluorophores for organic light-emitting diode (OLED) applications, while almost no attention has been paid to optimizing their light out-coupling efficiency. Here, we developed a linear donor-acceptor-donor (D-A-D) triad, namely CDFDB, which possesses high-lying reverse intersystem crossing (hRISC) property. Thanks to its integrated narrowband UV photoluminescence (PL) (λPL: 397 nm; FWHM: 48 nm), moderate PL quantum yield (ϕPL: 72 %, Tol), good triplet hot exciton (HE) conversion capability, and large horizontal dipole ratio (Θ//: 92 %), the OLEDs based on CDFDB not only can emit UV electroluminescence with relatively good color purity (λEL: 398 nm; CIEx,y: 0.161, 0.040), but also show a record maximum external quantum efficiency (EQEmax) of 12.0 %. This study highlights the important role of horizontal dipole orientation engineering in the molecular design of HE UV-OLED fluorophores.

6.
Phys Chem Chem Phys ; 25(6): 4598-4603, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36723048

RESUMO

The stability and degradation mechanism of phosphorescent organic light emitting diodes (OLEDs) has been an unresolved problem in the past decades. Here, we found that electron accumulation at the interface between the electron blocking layer and the emitting layer is one of the reasons for device degradation. By inserting a thin layer with a shallower LUMO level than that of the electron transporting layer between the emitting layer and the electron transporting layer, we successfully reduced the density of electrons at the interface and greatly improved the lifetime of the resulting green phosphorescent OLEDs. The half decay lifetime LT50 at the initial luminance of 1000 cd m-2 reached as high as 399 h, which is 1.7 times longer than that of the compared device without a thin layer.

7.
Phys Chem Chem Phys ; 25(43): 29451-29458, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37882197

RESUMO

The lifetime of blue organic light-emitting diodes (OLEDs) has always been a big challenge in practical applications. Blue OLEDs based on triplet-triplet annihilation (TTA) up-conversion materials have potential to achieve long lifetimes due to fusing two triplet excitons to one radiative singlet exciton, but there is a lack of an in-depth understanding of exciton dynamics on degradation mechanisms. In this work, we established a numerical model of exciton dynamics to study the impact factors in the stability of doped blue OLEDs based on TTA up-conversion hosts. By performing transient electroluminescence experiments, the intrinsic parameters related to the TTA up-conversion process of aging devices were determined. By combining the change of excess charge density in the emitting layer (EML) with aging time, it is concluded that the TTA materials are damaged by the excess electrons in the EML during ageing, which is the main degradation mechanism of OLEDs. This work provides a theoretical basis for preparing long-lifetime blue fluorescent OLEDs.

8.
Phys Chem Chem Phys ; 25(39): 26878-26884, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782517

RESUMO

Aggregation-induced delayed fluorescence (AIDF) materials have great potential in non-doped OLEDs due to their high photoluminescence (PL) quantum efficiency in film, high exciton utilization in the aggregated state and negligible efficiency roll-off at high luminance. However, their efficient mechanism in OLEDs is not yet well understood. Here, the exciton dynamics are used to investigate the electroluminescence (EL) mechanism of an AIDF emitter (4-(10H-phenoxazin-10-yl)phenyl)-(9-phenyl-9H-carbazol-3-yl)methanone (CP-BP-PXZ) in detail. It can be seen that the high efficiency and negligible efficiency roll-off in non-doped OLEDs based on CP-BP-PXZ as the emitter are ascribed to the effective reverse intersystem crossing (RISC) from high level triplet T2 to singlet S1 in the aggregated state. Furthermore, CP-BP-PXZ also exhibits excellent properties as a phosphor host due to its good AIDF properties. Thus, high-efficiency red phosphorescent OLEDs with low roll-off efficiency are successfully fabricated based on CP-BP-PXZ as the host. The maximum external quantum efficiency (EQEmax) reaches 23% and is maintained at 21% at a luminance of 1000 cd m-2.

9.
Proc Natl Acad Sci U S A ; 117(42): 25991-25998, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020292

RESUMO

Graphene has emerged as an attractive candidate for flexible transparent electrode (FTE) for a new generation of flexible optoelectronics. Despite tremendous potential and broad earlier interest, the promise of graphene FTE has been plagued by the intrinsic trade-off between electrical conductance and transparency with a figure of merit (σDC/σOp) considerably lower than that of the state-of-the-art ITO electrodes (σDC/σOp <123 for graphene vs. ∼240 for ITO). Here we report a synergistic electrical/optical modulation strategy to simultaneously boost the conductance and transparency. We show that a tetrakis(pentafluorophenyl)boric acid (HTB) coating can function as highly effective hole doping layer to increase the conductance of monolayer graphene by sevenfold and at the same time as an anti-reflective layer to boost the visible transmittance to 98.8%. Such simultaneous improvement in conductance and transparency breaks previous limit in graphene FTEs and yields an unprecedented figure of merit (σDC/σOp ∼323) that rivals the best commercial ITO electrode. Using the tailored monolayer graphene as the flexible anode, we further demonstrate high-performance green organic light-emitting diodes (OLEDs) with the maximum current, power and external quantum efficiencies (111.4 cd A-1, 124.9 lm W-1 and 29.7%) outperforming all comparable flexible OLEDs and surpassing that with standard rigid ITO by 43%. This study defines a straightforward pathway to tailor optoelectronic properties of monolayer graphene and to fully capture their potential as a generational FTE for flexible optoelectronics.

10.
Angew Chem Int Ed Engl ; 62(43): e202310388, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37668100

RESUMO

Aggregation-induced emission (AIE) luminogens (AIEgens) are attractive for the construction of non-doped blue organic light-emitting diodes (OLEDs) owning to their high emission efficiency in the film state. However, the large internal inversion rate (kIC (Tn) ) between high-lying triplet levels (Tn ) and Tn-1 causes a huge loss of triplet excitons, resulting in dissatisfied device performance of these AIEgens-based non-doped OLEDs. Herein, we designed and synthesized a blue luminogen of DPDPB-AC by fusing an AIEgen of TPB-AC and a DMPPP, which feature hot exciton and triplet-triplet annihilation (TTA) up-conversion process, respectively. DPDPB-AC successfully inherits the AIE feature and excellent horizontal dipole orientation of TPB-AC. Furthermore, it owes smaller kIC (Tn) than TPB-AC. When DPDPB-AC was applied in OLED as non-doped emitting layer, an outstanding external quantum efficiency of 10.3 % and an exceptional brightness of 69311 cd m-2 were achieved. The transient electroluminescent measurements and steady-state dynamic analysis confirm that both TTA and hot exciton processes contribute to such excellent device performance. This work provides a new insight into the design of efficient organic fluorophores by managing high-lying triplet excitons.

11.
Chemistry ; 28(59): e202202122, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35851509

RESUMO

Solar-driven selective oxygen reduction reaction on polymeric carbon nitride framework is one of the most promising approaches toward sustainable H2 O2 production. Potassium poly(heptazine imide) (PHI), with regular metal sites in the framework and favorable crystalline structure, is highly active for photocatalytic selective 2e oxygen reduction to produce H2 O2 . By introducing NH4 Cl into the eutectic KCl-LiCl salt mixture, the PHI framework exhibits a remarkable performance for photocatalytic production of H2 O2 , for example, a record high H2 O2 photo-production rate of 29.5 µmol h-1  mg-1 . The efficient photocatalytic performance is attributed to the favorable properties of the new PHI framework, such as improved porosity, negatively shifted LUMO position, enhanced exciton dissociation and charges migration properties. A mechanistic investigation by quenching and electron spin resonance technique reveals the critical role of superoxide radicals for the formation singlet oxygen, and the singlet oxygen is one of the critical intermediates towards the formation of the H2 O2 by proton extraction from the ethanol.

12.
Ecotoxicol Environ Saf ; 242: 113951, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35999766

RESUMO

Conventional photocatalysts generate numerous active species-primarily hydroxyl radicals (•OH)-under solar light excitation to exert photocatalytic activity for especially antibacterial effects. However, the light dependence limits their competitiveness against other antimicrobial materials since they do not work at night. Herein, a P-g-C3N4/Sr2MgSi2O7:Eu2+,Dy3+ (P-g-C3N4/SMSO) composite day-night photocatalyst is synthesized, using a model methyl orange (MO) substrate, and the impacts of trace P doping and the SMSO composite on the activity of the photocatalyst in MO degradation is investigated; Its antibacterial effect against Escherichia coli and Staphylococcus aureus on ceramic surfaces is further examined. The morphology, structure, and composition of the photocatalyst are characterized by SEM, TEM, XRD, FT-IR, and UV-vis DRS. Finally, the photocatalytic mechanism is elucidated through active species capture experiments and ESR testing. P doping and the SMSO heterojunction structure reduce the width of the forbidden band of g-C3N4 and broaden its visible-light-response range. Moreover, SMSO acts as a light source to realize long-lasting photocatalytic performance of the composite, even in the dark. The photocatalytic process produces •O2-, 1O2, and h+ active species, with •O2- and 1O2 playing the dominant role-instead of •OH as previously thought.


Assuntos
Nitrilas , Fósforo , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Cerâmica/farmacologia , Escherichia coli , Nitrilas/química , Fósforo/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Angew Chem Int Ed Engl ; 61(50): e202213157, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264218

RESUMO

The development of intramolecular-lock strategy is an appealing task for designing efficient thermally activated delayed fluorescence (TADF) molecules, but only limited examples have been reported so far. Herein we present a "medium ring"-lock strategy to develop TADF emitters for improving the efficiency of organic light-emitting diodes (OLEDs). The installation of an electron-deficient heptagonal diimide lock onto a highly rotatable biphenyl-based emitter not only enhances electron-withdrawing ability of acceptor that decreases singlet-triplet energy gap (ΔEST ), but also endows the skeleton with modest rigidity and flexibility that increases photoluminescence quantum yield (PLQY) in neat film. In particular, the integration of the diimide lock also leads to an increase in horizontal orientation factor (Θ// ) from 69 % to 83 %. Consequently, this modified intramolecular-lock strategy enables an efficient TADF emitter to assemble high-performance non-doped OLEDs with a high external quantum efficiency of 26.2 % and a power efficiency of 76.6 lm W-1 .

14.
Angew Chem Int Ed Engl ; 61(10): e202116810, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981618

RESUMO

Organic light-emitting diodes (OLEDs) radiating near ultraviolet (NUV) light are of high importance but rarely reported due to the lack of robust organic short-wavelength emitters. Here, we report a short π-conjugated molecule (POPCN-2CP) with high thermal and morphological stabilities and strong NUV photoluminescence. Its neat film exhibits an electroluminescence (EL) peak at 404 nm with a maximum external quantum efficiency (ηext,max ) of 7.5 % and small efficiency roll-off. The doped films of POPCN-2CP in both non-polar and polar hosts at a wide doping concentration range (10-80 wt%) achieve high-purity NUV light (388-404 nm) and excellent ηext,max s of up to 8.2 %. The high-level reverse intersystem crossing improves exciton utilization and accounts for the superb ηext,max s. POPCN-2CP can also serve as an efficient host for blue fluorescence, thermally activated delayed fluorescence and phosphorescence emitters, providing excellent EL performance via Förster energy transfer.

15.
Angew Chem Int Ed Engl ; 61(40): e202210210, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35980323

RESUMO

Multi-resonance boron-nitrogen-containing thermally activated delayed fluorescence (MR-TADF) emitters have experienced great success in assembling narrowband organic light-emitting diodes (OLEDs). However, the slow reverse intersystem crossing rate (kRISC ) of MR-emitters (103 -105  s-1 ) that will lead to severe device efficiency roll-off has received extensive attention and remains a challenging issue. Herein, we put forward a "space-confined donor-acceptor (SCDA)" strategy to accelerate RISC process. The introduction of SCDA units onto the MR-skeleton induces intermediate triplet states, which leads to a multichannel RISC process and thus increases kRISC . As illustrated examples, efficient MR-emitters have been developed with a sub-microsecond delayed lifetime and a high kRISC of 2.13×106  s-1 , which enables to assemble high-performance OLEDs with a maximum external quantum efficiency (EQEmax ) as high as 32.5 % and an alleviated efficiency roll-off (EQE1000 : 22.9 %).

16.
Angew Chem Int Ed Engl ; 61(41): e202209984, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981975

RESUMO

Herein, we report two multiple-resonance thermally activated delayed fluorescence emitters (VTCzBN and TCz-VTCzBN) based on indolo[3,2,1-jk]carbazole unit and boron-nitrogen skeletons, whose emissions peaking at 496 and 521 nm with full width at half maximum of 34 and 29 nm, respectively. Meanwhile, fast rate constants of reverse intersystem crossing of above 106  s-1 are obtained due to small singlet-triplet energy gaps and large spin-orbital coupling values. Notably, planar molecular structures along the transition dipole moment direction endow them with high horizontal emitting dipole ratios of up to 94 %. Consequently, the corresponding organic light-emitting diodes (OLEDs) show the maximum external quantum efficiencies of 31.7 % and 32.2 %, respectively. Particularly, OLED with TCz-VTCzBN display ultra-pure green emission with Commission Internationale de l'Eclairage coordinates of (0.22, 0.71), consistent with the green display standard of the National Television System Committee.

17.
Angew Chem Int Ed Engl ; 61(38): e202206916, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35754001

RESUMO

Polycyclo-heteraborin multi-resonance (MR) emitters are promising for high color-purity organic light-emitting diodes (OLEDs). Here, unlike the most common heteroatom ternary-doped (X/B/N) frameworks, a binary-doped (B/N) skeleton is reported with a large energy band for wide-range color tunability. Based on this parent-segment, a "one-pot" catalyst-free borylation method is developed which generates deep blue to pure green MR emitters from readily available starting materials, with peaks at 426-532 nm and full-width-at-half-maxima of 27-38 nm. Impressively, a maximum external quantum efficiency of nearly 40 % is recorded for the corresponding device with Commission Internationale de l'Eclairage coordinates of (0.14, 0.16), representing the state-of-the-art performances. This work presents a new paradigm and synthesis of B/N-doped MR emitters and will motivate the study of other novel frameworks.

18.
Angew Chem Int Ed Engl ; 61(40): e202207293, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35749578

RESUMO

Despite the remarkable multiple resonance (MR) optoelectronic properties of organic nanographenes with boron and nitrogen atoms disposed para to each other, the synthetic procedures are sophisticated with low yields and the molecular skeletons are limited. Here, a new paradigm of easy-to-access MR emitter is constructed by simplifying the multiborylation through amine-directed formation of B-N bonds while introducing an additional para-positioned nitrogen atom to trigger the MR effect. The proof-of-concept molecules exhibit narrowband emissions at 480 and 490 nm, with full width at half maxima (FWHMs) of only 29 and 34 nm. The devices based on them showed external quantum efficiencies (EQE) of >33.0 %, which remained above 24.0 % even at a high brightness of 5000 cd m-2 . This is the first example of MR emitters with a B-N covalent bond, not only decreasing the synthesis difficulty but also increasing the diversity of MR skeletons for emerging new optoelectronic properties.

19.
Angew Chem Int Ed Engl ; 61(48): e202209425, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36200442

RESUMO

Narrowband emitting fluorophores exhibit immense potentials for organic light-emitting diodes (OLEDs) with high color purity. However, it's still hard to simultaneously realize short-wavelength ultraviolet (UV) or near ultraviolet emission (NUV) while maintaining a narrowed full width at half maximum (FWHM) value, and rare work focus on such challenging pursuit. Herein, an ingenious synthetic method was devised to achieve emitters with coplanar structure. 11-(4,6-diphenyl-1,3,5-triazin-2-yl)indolo[3,2,1-jk]carbazole (ICZ-TAZ) was designed to realize narrowed UV emission both in photoluminescence (PL) and electroluminescence (EL) which benefited from the suppression of vibronic coupling. UV/NUV OLEDs based on ICZ-TAZ achieve external quantum efficiency (EQE) maximums of 3.26 % peaks @ 388 nm and 4.02 % peaks @ 406 nm with small FWHM of 32 nm and 46 nm, respectively, corresponding with reduced efficiency roll-off at luminance of 100 cd m-2 .

20.
Org Biomol Chem ; 19(32): 7085, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34355728

RESUMO

Correction for 'A powerful azomethine ylide route mediated by TiO2 photocatalysis for the preparation of polysubstituted imidazolidines' by Anan Liu et al., Org. Biomol. Chem., 2021, 19, 2192-2197, DOI: .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA