Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 17(38): e2006530, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33896110

RESUMO

Conversion and storage of solar energy into fuels and chemicals by artificial photosynthesis has been considered as one of the promising methods to address the global energy crisis. However, it is still far from the practical applications on a large scale. Nanoarray structures that combine the advantages of nanosize and array alignment have demonstrated great potential to improve solar energy conversion efficiency, stability, and selectivity. This article provides a comprehensive review on the utilization of nanoarray structures in artificial photosynthesis of renewable fuels and high value-added chemicals. First, basic principles of solar energy conversion and superiorities of using nanoarray structures in this field are described. Recent research progress on nanoarray structures in both abiotic and abiotic-biotic hybrid systems is then outlined, highlighting contributions to light absorption, charge transport and transfer, and catalytic reactions (including kinetics and selectivity). Finally, conclusions and outlooks on future research directions of nanoarray structures for artificial photosynthesis are presented.


Assuntos
Fotossíntese , Energia Solar , Catálise , Luz Solar
2.
Nano Lett ; 19(9): 6133-6139, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430170

RESUMO

Severe charge recombination in solar water-splitting devices significantly limits their performance. To address this issue, we design a frustum of a cone nanograting configuration by taking the hematite and Au-based thin-film photoanode as a model system, which greatly improves the photoelectrochemical water oxidation activity, affording an approximately 10-fold increase in the photocurrent density at 1.23 V versus the reversible hydrogen electrode compared to the planar counterpart. The surface plasmon polariton-induced electric field in hematite plays a dominant role in efficiency enhancement by facilitating charge separation, thus dramatically increasing the incident photon-to-current efficiency (IPCE) by more than 2 orders of magnitude in the near band gap of hematite. And the relatively weak electric field caused by light scattering in the nanograting structure is responsible for the approximate maximum 20-fold increase in IPCE within a broadband wavelength range. Our scalable strategy can be generalized to other solar energy conversion systems.

3.
Small ; 6(9): 1038-43, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20394069

RESUMO

It is demonstrated that silver nanoparticle (SNP) arrays fabricated by combining nanoimprint lithography and electrochemical deposition methods can be used as substrates for metal-enhanced fluorescence, which is widely used in optics, sensitive detection, and bioimaging. The method presented here is simple and efficient at controlling the nanoparticle density and interparticle distance within one array. Furthermore, it is found that the fluorescence intensity can be tuned by engineering the feature size of the SNP arrays. This is due to the different coupling efficiency between the emission of the fluorophores and surface plasmon resonance band of the metallic nanostructures.


Assuntos
Análise em Microsséries/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Prata/química , Espectrometria de Fluorescência/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
4.
RSC Adv ; 8(67): 38363-38369, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-35559063

RESUMO

Traditional superhydrophobic material use depends on two processes: creating a rough structure on a material surface and modifying the rough surface with low surface energy materials. However, common preparation methods are time-consuming, complex and cost-ineffective. Furthermore, these methods usually rely on chemicals, and evidently that will restrict mass preparation and application of superhydrophobic materials. This study reports a simple polypropylene (PP) solution-based process for producing PP hierarchical structures on commercial copper mesh (low surface energy materials), without modifying the low surface energy materials. The hierarchical structures of copper meshes, surface modified with PP, can be rationally controlled by optimizing the PP concentration. The obtained copper mesh showed contact and rolling off angles of 162° and 7°, respectively. Importantly, no significant performance loss was observed after the superhydrophobic copper meshes were continuously and drastically rinsed with 3.5 wt% NaCl solution, or repeated tearing with an adhesive tape for more than 30 cycles, indicating its good durability. After surface modification with PP particles, the copper mesh exhibits both excellent superhydrophobicity and superoleophilicity. Additionally, the as-prepared copper mesh can self-float on water surface when deformed into a "miniature boat" shape. Meanwhile, self-driven spilled oil cleanup was achieved using a superhydrophobic copper mesh-formed miniature boat. The miniature boat can realize energy conservation as well as high efficiency. The cleanup rate of the boat is as high as 97.1%, demonstrating its great potential in environmental remediation applications.

5.
ACS Appl Mater Interfaces ; 4(8): 3779-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22856546

RESUMO

A simple and efficient method for fabricating gold nanoparticle (AuNP) arrays is developed. With this method, the AuNP arrays are fabricated by taking an electrochemical deposition (ECD) process on the ITO substrate, which is initially patterned with nanoimprint lithography (NIL). The stamp for NIL is fabricated by the cost-efficient nanosphere lithography (NSL). The size of the AuNPs can be adjusted by varying the potential and duration of ECD. In this work, the diameters of AuNPs are varied from 130 to 420 nm. The AuNP arrays can be readily extended to other conductive substrates, which may be applied for detecting and sensing.


Assuntos
Eletroquímica/métodos , Ouro/química , Nanotecnologia/métodos , Cristalização , Galvanoplastia , Nanopartículas Metálicas/química , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura/métodos , Modelos Estatísticos , Nanosferas/química , Tamanho da Partícula , Silício/química , Especificidade por Substrato , Difração de Raios X
6.
J Colloid Interface Sci ; 360(1): 320-3, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21592486

RESUMO

An efficient fabrication technique for large area periodic metallic split-ring arrays has been demonstrated by the combination of tilted nanoimprint lithography and nanotransfer imprinting. The feature size of the split-rings can be adjusted by varying the key geometry parameters of the original imprinting mold. Due to the flexible nature of PDMS molds, these arrays can be patterned on curved surfaces. The molds for nanoimprint lithography and nanotransfer imprinting can be used multiple times without a loss of fidelity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA