Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Plant Biol ; 23(1): 167, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997861

RESUMO

BACKGROUND: Prior drought stress may change plants response patterns and subsequently increase their tolerance to the same condition, which can be referred to as "drought memory" and proved essential for plants well-being. However, the mechanism of transcriptional drought memory in psammophytes remains unclear. Agriophyllum squarrosum, a pioneer species on mobile dunes, is widely spread in Northern China's vast desert areas with outstanding ability of water use efficiency. Here we conducted dehydration-rehydration treatment on A. squarrosum semi-arid land ecotype AEX and arid land ecotype WW to dissect the drought memory mechanism of A. squarrosum, and to determine the discrepancy in drought memory of two contrasting ecotypes that had long adapted to water heterogeneity. RESULT: Physiological traits monitoring unveiled the stronger ability and longer duration in drought memory of WW than that of AEX. A total of 1,642 and 1,339 drought memory genes (DMGs) were identified in ecotype AEX and WW, respectively. Furthermore, shared DMGs among A. squarrosum and the previously studied species depicted that drought memory commonalities in higher plants embraced pathways like primary and secondary metabolisms; while drought memory characteristics in A. squarrosum were mainly related to response to heat, high light intensity, hydrogen peroxide, and dehydration, which might be due to local adaptation to desert circumstances. Heat shock proteins (HSPs) occupied the center of the protein-protein interaction (PPI) network in drought memory transcription factors (TF), thus playing a key regulatory role in A. squarrosum drought memory. Co-expression analysis of drought memory TFs and DMGs uncovered a novel regulating module, whereby pairs of TFs might function as molecular switches in regulating DMG transforming between high and low expression levels, thus promoting drought memory reset. CONCLUSION: Based on the co-expression analysis, protein-protein interaction prediction, and drought memory metabolic network construction, a novel regulatory module of transcriptional drought memory in A. squarrosum was hypothesized here, whereby recurrent drought signal is activated by primary TF switches, then amplified by secondary amplifiers, and thus regulates downstream complicated metabolic networks. The present research provided valuable molecular resources on plants' stress-resistance basis and shed light on drought memory in A. squarrosum.


Assuntos
Chenopodiaceae , Ecótipo , Fatores de Transcrição/genética , Desidratação , Secas , Plantas , Água , Regulação da Expressão Gênica de Plantas
2.
J Plant Res ; 134(5): 999-1011, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34308491

RESUMO

Agriophyllum squarrosum (L.) Moq., a pioneer plant endemic to the temperate deserts of Asia, could be domesticated into an ideal crop with outstanding ecological and medicinal characteristics. A previous study showed differential organic acid accumulation between two in situ altitudinal ecotypes. To verify whether this accumulation was determined by environmental or genetic factors, we conducted organic acid targeted metabolic profiling among 14 populations of A. squarrosum collected from regions with different altitudes based on a common garden experiment. Results showed that the most abundant organic acid in A. squarrosum was citric acid (96.03%, 2322.90 µg g-1). Association analysis with in situ environmental variables showed that salicylic acid content was positively correlated with altitudinal gradient. Considering the enrichment of salicylic acid and protocatechualdehyde in high-altitude populations based on the common garden experiment, and the high expression of their biosynthesis relative genes (i.e., PAL and C4H) in the in situ high-altitude ecotype, we propose that organic acid accumulation could be involved in local adaptation to high altitudes. This study not only addresses the molecular basis of local adaptation involving the accumulation of organic acids in the desert plant A. squarrosum but also provides a method to screen wild germplasms to mitigate the impact of global climate change.


Assuntos
Chenopodiaceae , Plantas Medicinais , Aclimatação , Adaptação Fisiológica , Altitude , Mudança Climática
3.
Bull Environ Contam Toxicol ; 106(3): 528-535, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33661312

RESUMO

Phytoremediation is a green, simple, eco-friendly, sustainable, and cost-effective remediation technology to remove and degrade contaminants from soil. In this study, a germination experiment and a pot experiment were performed in greenhouse to evaluate cadmium toxicity and phytoremediation capacity. The results showed that there was the highest membership function value of cadmium (MFVC) in KFJT-3 than that of KFJT-CK and KFJT-1, the value being 0.473, 0.456 and 0.413, respectively. Furthermore, the highest biomass was discovered in KFJT-3 compared to the other genotypes under 50 mg/kg cadmium stress. Physiological analysis showed that proline content significantly increased in KFJT-3, the value being 31.88%. In addition, Bioaccumulation factor (BAF) and Translocation factor (TF) value were 3.80 and 1.02 for KFJT-3, respectively. In conclusion, BAF and TF values showed that the cadmium tolerance of KFJT-1 and KFJT-3 could be higher than that of KFJT-CK, which could be the genotype for phytoremediation of cadmium contaminated soil.


Assuntos
Poluentes do Solo , Sorghum , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Raízes de Plantas/química , Prolina , Plântula/química , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
4.
Heredity (Edinb) ; 124(1): 62-76, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527784

RESUMO

Flowering time is one of the most critical traits for plants' life cycles, which is influenced by various environment changes, such as global warming. Previous studies have suggested that to guarantee reproductive success, plants have shifted flowering times to adapt to global warming. Although many studies focused on the molecular mechanisms of early flowering, little was supported by the repeated sampling at different time points through the changing climate. To fully dissect the temporal and spatial evolutionary genetics of flowering time, we investigated nucleotide variation in ten flowering time candidate genes and nine reference genes for the same ten wild-barley populations sampled 28 years apart (1980-2008). The overall genetic differentiation was significantly greater in the descendant populations (2008) compared with the ancestral populations (1980); however, local adaptation tests failed to detect any single-nucleotide polymorphism (SNP)/indel under spatial-diversifying selection at either time point. By contrast, the WFABC (Wright-Fisher ABC-based approach) that detected 54 SNPs/indels was under strong selection during the past 28 generations. Moreover, all these 54 alleles were segregated in the ancestral populations, but fixed in the descendent populations. Among the top ten SNPs/indels, seven were located in genes of FT1 (FLOWERING TIME LOCUS T 1), CO1 (CONSTANS-LIKE PROTEIN 1), and VRN-H2 (VERNALIZATION-H2), which have been documented to be associated with flowering time regulation in barley cultivars. This study might suggest that all ten populations have undergone parallel evolution over the past few decades in response to global warming, and even an overwhelming local adaptation and ecological differentiation.


Assuntos
Adaptação Fisiológica/genética , Flores/fisiologia , Hordeum/genética , Seleção Genética , Alelos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genética Populacional , Hordeum/fisiologia , Mutação INDEL , Israel , Polimorfismo de Nucleotídeo Único
5.
J Craniofac Surg ; 31(8): 2355-2359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33136890

RESUMO

Tissue engineering cartilage is a promising strategy to reconstruct the craniofacial cartilaginous defects. It demands plenty of chondrocytes to generate human-sized craniofacial frameworks. Partly replacement of chondrocytes by adipose-derived stem cells (ADSCs) can be an alternative strategy.The study aimed at evaluating the chondrogenic outcome of ADSCs and chondrocytes in direct co-culture with transforming growth factor-beta (TGF-ß3). Porcine ADSCs and chondrocytes were obtained from abdominal wall and external ears. Four groups: ADSCs or chondrocytes monocultured in medium added with TGF-ß3; ADSCs and ACs co-cultured with or without TGF-ß3. Cell growth rate was performed to evaluate the cell proliferation. Morphological, histologic and real-time polymerase chain reaction analysis were performed to characterize the chondrogenic outcome of pellets. ADSCs had favorable multi-lineage differentiation potential. Further, when ADSCs were co-cultured with chondrocytes in medium added with TGF-ß3, the cell proliferation was promoted and the chondrogenic differentiation of ADSCs was enhanced. We demonstrate that pellet co-culture of ADSCs and chondrocyte with TGF-ß3 could construct high quantity cartilages. It suggests that this strategy might be useful in future cartilage repair.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Condrócitos/citologia , Células-Tronco/citologia , Fator de Crescimento Transformador beta3/farmacologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Animais , Diferenciação Celular , Proliferação de Células , Condrócitos/efeitos dos fármacos , Condrogênese , Técnicas de Cocultura , Células-Tronco/efeitos dos fármacos , Suínos , Engenharia Tecidual
6.
BMC Genomics ; 15: 872, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25287394

RESUMO

BACKGROUND: Sand rice (Agriophyllum squarrosum) is an annual desert plant adapted to mobile sand dunes in arid and semi-arid regions of Central Asia. The sand rice seeds have excellent nutrition value and have been historically consumed by local populations in the desert regions of northwest China. Sand rice is a potential food crop resilient to ongoing climate change; however, partly due to the scarcity of genetic information, this species has undergone only little agronomic modifications through classical breeding during recent years. RESULTS: We generated a deep transcriptomic sequencing of sand rice, which uncovers 67,741 unigenes. Phylogenetic analysis based on 221 single-copy genes showed close relationship between sand rice and the recently domesticated crop sugar beet. Transcriptomic comparisons also showed a high level of global sequence conservation between these two species. Conservation of sand rice and sugar beet orthologs assigned to response to salt stress gene ontology term suggests that sand rice is also a potential salt tolerant plant. Furthermore, sand rice is far more tolerant to high temperature. A set of genes likely relevant for resistance to heat stress, was functionally annotated according to expression levels, sequence annotation, and comparisons corresponding transcriptome profiling results in Arabidopsis. CONCLUSIONS: The present work provides abundant genomic information for functional dissection of the important traits in sand rice. Future screening the genetic variation among different ecotypes and constructing a draft genome sequence will further facilitate agronomic trait improvement and final domestication of sand rice.


Assuntos
Adaptação Fisiológica , Amaranthaceae/genética , Amaranthaceae/fisiologia , Produtos Agrícolas , Alimentos , Perfilação da Expressão Gênica , Genes de Plantas/genética , Mudança Climática , Abastecimento de Alimentos , Temperatura Alta , Anotação de Sequência Molecular
7.
Genes (Basel) ; 15(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39336819

RESUMO

Background/Objectives:Agriophyllum squarrosum (L.) Moq. (A. squarrosum), also known as sandrice, is an important medicinal plant widely distributed in dunes across all the deserts of China. Common garden trials have shown content variations in flavonoids among the ecotypes of sandrice, which correlated with temperature heterogeneity in situ. However, there have not been any environmental control experiments to further elucidate whether the accumulation of flavonoids was triggered by cold stress; Methods: This study conducted a four-day ambient 4 °C low-temperature treatment on three ecotypes along with an in situ annual mean temperature gradient (Dulan (DL), Aerxiang (AEX), and Dengkou (DK)); Results: Target metabolomics showed that 12 out of 14 flavonoids in sandrice were driven by cold stress. Among them, several flavonoids were significantly up-regulated, such as naringenin and naringenin chalcone in all three ecotypes; isorhamnetin, quercetin, dihydroquercetin, and kaempferol in DL and AEX; and astragalin in DK. They were accompanied by 19 structural genes of flavonoid synthesis and 33 transcription factors were markedly triggered by cold stress in sandrice. The upstream genes, AsqAEX006535-CHS, AsqAEX016074-C4H, and AsqAEX004011-4CL, were highly correlated with the enrichment of naringenin, which could be fine-tuned by AsqAEX015868-bHLH62, AsqAEX001711-MYB12, and AsqAEX002220-MYB1R1; Conclusions: This study sheds light on how desert plants like sandrice adapt to cold stress by relying on a unique flavonoid biosynthesis mechanism that regulating the accumulation of naringenin. It also supports the precise development of sandrice for the medicinal industry. Specifically, quercetin and isorhamnetin should be targeted for development in DL and AEX, while astragalin should be precisely developed in DK.


Assuntos
Resposta ao Choque Frio , Flavonoides , Regulação da Expressão Gênica de Plantas , Plantas Medicinais , Flavonoides/biossíntese , Flavonoides/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Temperatura Baixa , China , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clima Desértico , Vias Biossintéticas
8.
Ecol Evol ; 14(9): e70199, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39219573

RESUMO

Hybrid speciation plays an important role in species diversification. The establishment of reproductive isolation is crucial for hybrid speciation, and the identification of diverse types of hybrids, particularly homoploid hybrid species, contributes to a comprehensive understanding of this process. Reaumuria songarica is a constructive shrub widespread in arid Central Asia. Previous studies have inferred that the R. songarica populations in the Gurbantunggut Desert (GuD) originated from homoploid hybridizations between its eastern and western lineages and may have evolved into an incipient species. To further elucidate the genetic composition of different hybrid populations and to determine the species boundary of this hybrid lineage, we investigated the overall phylogeographic structure of R. songarica based on variation patterns of five cpDNA and one nrITS sequences across 32 populations. Phylogenetic analyses demonstrated that within the GuD lineage, the Wuerhe population evolved directly from ancestral lineages, whereas the others originated from hybridizations between the eastern and western lineages. PCoA and genetic barrier analysis supported the subdivision of the GuD lineage into the southern (GuD-S) and northern (GuD-N) groups. Populations in the GuD-S group had a consistent genetic composition and the same ancestral female parent, indicating that they belonged to a homoploid hybrid lineage. However, the GuD-N group experienced genetic admixture of the eastern and western lineages on nrITS and cpDNA, with some populations inferred to be allopolyploid based on ploidy data. Based on cpDNA haplotypes, BEAST analyses showed that the GuD-S and GuD-N groups originated after 0.5 Ma. Our results suggest that multiple expansions and contractions of GuD, driven by Quaternary climatic oscillations and the Kunlun-Yellow River tectonic movement, are important causes of the complex origins of R. songarica populations in northern Xinjiang. This study highlights the complex origins of the Junggar Basin flora and the underappreciated role of hybridization in increasing its species diversity.

9.
Front Plant Sci ; 15: 1291630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606074

RESUMO

Climate change, characterized by rising atmospheric CO2 levels and temperatures, poses significant challenges to global crop production. Sweet sorghum, a prominent C4 cereal extensively grown in arid areas, emerges as a promising candidate for sustainable bioenergy production. This study investigated the responses of photosynthesis and leaf-scale water use efficiency (WUE) to varying light intensity (I) in sweet sorghum under different temperature and CO2 conditions. Comparative analyses were conducted between the A n-I, g s-I, T r-I, WUEi-I, and WUEinst-I models proposed by Ye et al. and the widely utilized the non-rectangular hyperbolic (NRH) model for fitting light response curves. The Ye's models effectively replicated the light response curves of sweet sorghum, accurately capturing the diminishing intrinsic WUE (WUEi) and instantaneous WUE (WUEinst) trends with increasing I. The fitted maximum values of A n, g s, T r, WUEi, and WUEinst and their saturation light intensities closely matched observations, unlike the NRH model. Despite the NRH model demonstrating high R 2 values for A n-I, g s-I, and T r-I modelling, it returned the maximum values significantly deviating from observed values and failed to generate saturation light intensities. It also inadequately represented WUE responses to I, overestimating WUE. Across different leaf temperatures, A n, g s, and T r of sweet sorghum displayed comparable light response patterns. Elevated temperatures increased maximum A n, g s, and T r but consistently declined maximum WUEi and WUEinst. However, WUEinst declined more sharply due to the disproportionate transpiration increase over carbon assimilation. Critically, sweet sorghum A n saturated at current atmospheric CO2 levels, with no significant gains under 550 µmol mol-1. Instead, stomatal closure enhanced WUE under elevated CO2 by coordinated g s and T r reductions rather than improved carbon assimilation. Nonetheless, this response diminished under simultaneously high temperature, suggesting intricate interplay between CO2 and temperature in modulating plant responses. These findings provide valuable insights into photosynthetic dynamics of sweet sorghum, aiding predictions of yield and optimization of cultivation practices. Moreover, our methodology serves as a valuable reference for evaluating leaf photosynthesis and WUE dynamics in diverse plant species.

10.
Biomed Environ Sci ; 26(9): 726-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24099606

RESUMO

OBJECTIVE: To investigate the effect of simulated microgravity and carbon ion irradiation (CIR) on spermatogenic cell apoptosis and sperm DNA damage to the testis of male Swiss Webster mice, and assess the risk associated with space environment. METHODS: Sperm DNA damage indicated by DNA fragmentation index (DFI) and high DNA stainability (HDS) was measured by sperm chromatin structure assay (SCSA). Apoptosis of spermatogenic cells was detected by annexin V-propidium iodide assay. Bax (the expression levels of p53) and proliferating cell nuclear antigen (PCNA) were measured by immunoblotting; p53 and PCNA were located by immunohistology. RESULTS: HDS, DFI, apoptosis index, and the expression levels of p53 and Bax were detected to be significantly higher in the experimental groups (P<0.05) compared with those in the control group; however, the PCNA expression varied to a certain degree. p53- and PCNA- positive expression were detected in each group, mainly in relation to the spermatogonic cells and spermatocytes. CONCLUSION: The findings of the present study demonstrated that simulated microgravity and CIR can induce spermatogenic cell apoptosis and sperm DNA damage. Sperm DNA damage may be one of the underlying mechanisms behind male fertility decline under space environment. These findings may provide a scientific basis for protecting astronauts and space traveler's health and safety.


Assuntos
Íons Pesados/efeitos adversos , Espermatogênese/efeitos da radiação , Espermatozoides/efeitos da radiação , Testículo/efeitos da radiação , Simulação de Ausência de Peso , Animais , Apoptose/efeitos da radiação , Carbono , Proliferação de Células/efeitos da radiação , Dano ao DNA , Imuno-Histoquímica , Masculino , Camundongos , Distribuição Aleatória , Contagem de Espermatozoides
11.
Brain Res ; 1797: 148116, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209898

RESUMO

Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.

13.
Front Plant Sci ; 13: 985572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204072

RESUMO

Agriophyllum squarrosum (L.) Moq., well known as sandrice, is an important wild forage in sandy areas and a promising edible and medicinal resource plant with great domestication potential. Previous studies showed flavonoids are one of the most abundant medicinal ingredients in sandrice, whereby isorhamnetin and isorhamnetin-3-glycoside were the top two flavonols with multiple health benefits. However, the molecular regulatory mechanisms of flavonoids in sandrice remain largely unclear. Based on a common garden trial, in this study, an integrated transcriptomic and flavonoids-targeted metabolomic analysis was performed on the vegetative and reproductive periods of six sandrice ecotypes, whose original habitats covered a variety of environmental factor gradients. Multiple linear stepwise regression analysis unveiled that flavonoid accumulation in sandrice was positively correlated with temperature and UVB and negatively affected by precipitation and sunshine duration, respectively. Weighted co-expression network analysis (WGCNA) indicated the bHLH and MYB transcription factor (TF) families might play key roles in sandrice flavonoid biosynthesis regulation. A total of 22,778 differentially expressed genes (DEGs) were identified between ecotype DL and ecotype AEX, the two extremes in most environmental factors, whereby 85 DEGs could be related to known flavonoid biosynthesis pathway. A sandrice flavonoid biosynthesis network embracing the detected 23 flavonoids in this research was constructed. Gene families Plant flavonoid O-methyltransferase (AsPFOMT) and UDP-glucuronosyltransferase (AsUGT78D2) were identified and characterized on the transcriptional level and believed to be synthases of isorhamnetin and isorhamnetin-3-glycoside in sandrice, respectively. A trade-off between biosynthesis of rutin and isorhamnetin was found in the DL ecotype, which might be due to the metabolic flux redirection when facing environmental changes. This research provides valuable information for understanding flavonoid biosynthesis in sandrice at the molecular level and laid the foundation for precise development and utilization of this functional resource forage.

14.
AoB Plants ; 14(1): plab060, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35047161

RESUMO

Tamarix ramosissima is a typical desert plant species that is widely distributed in the desert areas of Northwest China. It plays a significant role in sand fixation and soil water conservation. In particular, how it uses water to survive in the desert plays an important role in plant growth and ecosystem function. Previous studies have revealed that T. ramosissima can alleviate drought by absorbing water from its leaves under extreme drought conditions. To date, there is no clear molecular regulation mechanism to explain foliar water uptake (FWU). In the present study, we correlated diurnal meteorological data, sap flow and photosynthetic parameters to determine the physical and biological characteristics of FWU. Our results suggested that the lesser the groundwater, the easier it is for T. ramosissima to absorb water via the leaves. Gene ontology annotation and Kyoto Encyclopaedia of Genes and Genomes pathway analysis of the transcriptome profile of plants subjected to high humidity suggested that FWU was highly correlated to carbohydrate metabolism, energy transfer, pyruvate metabolism, hormone signal transduction and plant-pathogen interaction. Interestingly, as a C3 plant, genes such as PEPC, PPDK, MDH and RuBP, which are involved in crassulacean acid metabolism (CAM) photosynthesis, were highly upregulated and accompanied by FWU. Therefore, we proposed that in the case of sufficient water supply, C3 photosynthesis is used in T. ramosissima, whereas in cases of extreme drought, starch is degraded to provide CO2 for CAM photosynthesis to make full use of the water obtained via FWU and the water that was transported or stored to assimilating branches and stems. This study may provide not only an important theoretical foundation for FWU and conversion from C3 plants to CAM plants but also for engineering improved photosynthesis in high-yield drought-tolerant plants and mitigation of climate change-driven drought.

15.
Pathol Res Pract ; 234: 153894, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489123

RESUMO

Macrophages substantially influence the development, progression, and complications of inflammation-driven diseases. Although numerous studies support the critical role of Notch signaling in most inflammatory diseases, there is limited data on the role of Notch signaling in TLR4-induced macrophage activation and interaction of Notch signaling with other signaling pathways in macrophages during inflammation, such as the NF-κB pathway. This study confirmed that stimulation with lipopolysaccharide (LPS), a TLR4 ligand, upregulated Notch1 expression in monocyte/macrophage-like RAW264.7 cells and bone marrow-derived macrophages (BMDMs). LPS also induced increased mRNA expression of Notch target genes Notch1 and Hes1 in macrophages, suggesting that TLR4 signaling enhances activation of the Notch pathway. The upregulation of Notch1, Notch1 intracellular domain (NICD), and Hes1 proteins by LPS treatment was inhibited by DAPT, a Notch1 inhibitor. Additionally, the increased TNF-α, IL-6, and IL-1ß expression induced by LPS was inhibited by DAPT and rescued by jagged1, a Notch1 ligand. Furthermore, suppression of Notch signaling by DAPT upregulated Cylindromatosis (CYLD) expression but downregulated TRAF6 expression, IκB kinase (IKK) α/ß phosphorylation, and subsequently, phosphorylation and degradation of IκB-α, indicating that DAPT inhibited NF-κB activation triggered by TLR-4. Interestingly, DAPT did not inhibit the increased MyD88 expression induced by LPS. Our study findings demonstrate that macrophage stimulation via the TLR4 signaling cascade triggers activation of Notch1 signaling, which regulates the expression patterns of genes involved in pro-inflammatory responses by activating NF-κB. This effect may be dependent on the CYLD-TRAF6-IKK pathway. Thus, Notch1 signaling may provide a therapeutic target against infectious and inflammation-driven diseases.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Humanos , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Inibidores da Agregação Plaquetária/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Receptor Notch1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/farmacologia , Receptor 4 Toll-Like/genética
16.
Mol Ecol ; 20(7): 1463-74, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21309875

RESUMO

Perennial plants monitor seasonal changes through changes in environmental conditions such as the quantity and quality of light and genes in the photoperiodic pathway are known to be involved in controlling these processes. Here, we examine 25 of genes from the photoperiod pathway in Populus tremula (Salicaceae) for signatures of adaptive evolution. Overall, levels of synonymous polymorphism in the 25 genes are lower than at control loci selected randomly from the genome. This appears primarily to be caused by lower levels of synonymous polymorphism in genes associated with the circadian clock. Natural selection appears to play an important role in shaping protein evolution at several of the genes in the photoperiod pathways, which is highlighted by the fact that approximately 40% of the genes from the photoperiod pathway have estimates of selection on nonsynonymous polymorphisms that are significantly different from zero. A surprising observation we make is that circadian clock-associated genes appear to be over-represented among the genes showing elevated rates of protein evolution; seven genes are evolving under positive selection and all but one of these genes are involved in the circadian clock of Populus.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fotoperíodo , Populus/genética , Animais , Evolução Molecular , Genes de Plantas , Genoma de Planta , Polimorfismo Genético , Populus/fisiologia , Estações do Ano , Seleção Genética
17.
Front Genet ; 12: 656061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995487

RESUMO

Natural selection is a significant driver of population divergence and speciation of plants. Due to local adaptation to geographic regions with ecological gradients, plant populations harbored a wide range of adaptive genetic variation to enable them to survive the heterogeneous habitats. This is all the more necessary for desert plants, as they must tolerant more striking gradients of abiotic stresses. However, the genomic mechanism by which desert plants adapt to ecological heterogeneity remains unclear, which could help to guide the sustainability of desert ecosystems. Here, using restriction-site-associated DNA sequencing in 38 natural populations, we investigated the genomic divergence and environmental adaptation of sand rice, Agriophyllum squarrosum, an annual pioneer species that covers sand dunes in northern China. Population genetic structure analyses showed that sand rice could be divided into three geographically distinct lineages, namely, Northwest, Central, and East. Phylogeographic analyses revealed that the plant might originate locally in Bergen County and further differentiated into the East lineage and then the Central lineage. Ecological niche modeling found that different lineages occupied distinct ecological niches, suggesting that the ecological gradient would have triggered genomic differentiation among sand rice lineages. Ecological association study supported that the three SNPs under divergent selection were closely correlated with precipitation gradients, indicating that precipitation might be the most important stress trigger for lineage diversity in sand rice. These adaptive SNPs could be used to genotype suitable germplasms for the ecological restoration of specific desertified lands. Further analyses found that genetic structure could significantly overestimate the signals for balancing selection. Within the Central lineage, we still found that 175 SNPs could be subject to balancing selection, which could be the means by which sand rice maintains genetic diversity and adapts to multiple stresses across heterogeneous deserts and sandy lands. From a genomic point of view, this study highlighted the local and global adaptation patterns of a desert plant to extreme and heterogeneous habitats. Our data provide molecular guidance for the restoration of desertified lands in the arid and semi-arid regions of China and could facilitate the marker assistant breeding of this potential crop to mitigate climate change.

18.
Front Plant Sci ; 12: 683265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354722

RESUMO

Agriophyllum squarrosum (L.) Moq., a pioneer plant endemic to the temperate deserts of Asia, could be domesticated into an ideal crop with outstanding ecological and medicinal characteristics. A previous study showed differential flavonoid accumulation between two in situ altitudinal ecotypes. To verify whether this accumulation was determined by environmental or genetic factors, we conducted flavonoid-targeted metabolic profiling among 14 populations of A. squarrosum collected from regions with different altitudes based on a common garden experiment. Results showed that the most abundant flavonoid in A. squarrosum was isorhamnetin (48.40%, 557.45 µg/g), followed by quercetin (13.04%, 150.15 µg/g), tricin (11.17%, 128.70 µg/g), isoquercitrin (7.59%, 87.42 µg/g), isovitexin (7.20%, 82.94 µg/g), and rutin (7.00%, 80.62 µg/g). However, based on a common garden at middle-altitude environment, almost none of the flavonoids was enriched in the high-altitude populations, and even some flavonoids, such as quercetin, tricin, and rutin, were significantly enriched in low-altitude populations. This phenomenon indicated that the accumulation of flavonoids was not a result of local adaptation to high altitude. Furthermore, association analysis with in situ environmental variables showed that the contents of quercetin, tricin, and rutin were strongly positively correlated with latitude, longitude, and precipitation gradients and negatively correlated with temperature gradients. Thus, we could conclude that the accumulations of flavonoids in A. squarrosum were more likely as a result of local adaption to environmental heterogeneity combined with precipitation and temperature other than high altitude. This study not only provides an example to understand the molecular ecological basis of pharmacognosy, but also supplies methodologies for developing a new industrial crop with ecological and agricultural importance.

19.
Plants (Basel) ; 9(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867062

RESUMO

The influence of Quaternary climate fluctuation on the geographical structure and genetic diversity of species distributed in the regions of the Qinghai-Tibet Plateau (QTP) has been well established. However, the underlying role of the East Asian monsoon system (EAMS) in shaping the genetic structure of the population and the demography of plants located in the arid northwest of China has not been explored. In the present study, Nitraria tangutorum, a drought-tolerant desert shrub that is distributed in the EAMS zone and has substantial ecological and economic value, was profiled to better understand the influence of EAMS evolution on its biogeographical patterns and demographic history. Thus, the phylogeographical structure and historical dynamics of this plant species were elucidated using its five chloroplast DNA (cpDNA) fragments. Hierarchical structure analysis revealed three distinct, divergent lineages: West, East-A, and East-B. The molecular dating was carried out using a Bayesian approach to estimate the time of intraspecies divergence. Notably, the eastern region, which included East-A and East-B lineages, was revealed to be the original center of distribution and was characterized by a high level of genetic diversity, with the intraspecific divergence time dated to be around 2.53 million years ago (Ma). These findings, combined with the data obtained by ecological niche modeling analysis, indicated that the East lineages have undergone population expansion and differentiation, which were closely correlated with the development of the EAMS, especially the East Asian winter monsoon (EAWM). The West lineage appears to have originated from the migration of N. tangutorum across the Hexi corridor at around 1.85 Ma, and subsequent colonization of the western region. These results suggest that the EAWM accelerated the population expansion of N. tangutorum and subsequent intraspecific differentiation. These findings collectively provide new information on the impact of the evolution of the EAMS on intraspecific diversification and population demography of drought-tolerant plant species in northwest China.

20.
Ecol Evol ; 10(18): 10076-10094, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005365

RESUMO

The climate in arid Central Asia (ACA) has changed rapidly in recent decades, but the ecological consequences of this are far from clear. To predict the impacts of climate change on ecosystem functioning, greater attention should be given to the relationships between leaf functional traits and environmental heterogeneity. As a dominant constructive shrub widely distributed in ACA, Reaumuria soongarica provided us with an ideal model to understand how leaf functional traits of desert ecosystems responded to the heterogeneous environments of ACA. Here, to determine the influences of genetic and ecological factors, we characterized species-wide variations in leaf traits among 30 wild populations of R. soongarica and 16 populations grown in a common garden. We found that the leaf length, width, and leaf length to width ratio (L/W) of the northern lineage were significantly larger than those of other genetic lineages, and principal component analysis based on the in situ environmental factors distinguished the northern lineage from the other lineages studied. With increasing latitude, leaf length, width, and L/W in the wild populations increased significantly. Leaf length and L/W were negatively correlated with altitude, and first increased and then decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). Stepwise regression analyses further indicated that leaf length variation was mainly affected by latitude. However, leaf width was uncorrelated with altitude, MAT, or MAP. The common garden trial showed that leaf width variation among the eastern populations was caused by both local adaptation and phenotypic plasticity. Our findings suggest that R. soongarica preferentially changes leaf length to adjust leaf size to cope with environmental change. We also reveal phenotypic evidence for ecological speciation of R. soongarica. These results will help us better understand and predict the consequences of climate change for desert ecosystem functioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA