Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 131(2): e34-e50, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611695

RESUMO

BACKGROUND: Despite significantly reduced acute myocardial infarction (MI) mortality in recent years, ischemic heart failure continues to escalate. Therapeutic interventions effectively reversing pathological remodeling are an urgent unmet medical need. We recently demonstrated that AdipoR1 (APN [adiponectin] receptor 1) phosphorylation by GRK2 (G-protein-coupled receptor kinase 2) contributes to maladaptive remodeling in the ischemic heart. The current study clarified the underlying mechanisms leading to AdipoR1 phosphorylative desensitization and investigated whether blocking AdipoR1 phosphorylation may restore its protective signaling, reversing post-MI remodeling. METHODS: Specific sites and underlying molecular mechanisms responsible for AdipoR1 phosphorylative desensitization were investigated in vitro (neonatal and adult cardiomyocytes). The effects of AdipoR1 phosphorylation inhibition upon APN post-MI remodeling and heart failure progression were investigated in vivo. RESULTS: Among 4 previously identified sites sensitive to GRK2 phosphorylation, alanine substitution of Ser205 (AdipoR1S205A), but not other 3 sites, rescued GRK2-suppressed AdipoR1 functions, restoring APN-induced cell salvage kinase activation and reducing oxidative cell death. The molecular investigation followed by functional determination demonstrated that AdipoR1 phosphorylation promoted clathrin-dependent (not caveolae) endocytosis and lysosomal-mediated (not proteasome) degradation, reducing AdipoR1 protein level and suppressing AdipoR1-mediated cytoprotective action. GRK2-induced AdipoR1 endocytosis and degradation were blocked by AdipoR1S205A overexpression. Moreover, AdipoR1S205E (pseudophosphorylation) phenocopied GRK2 effects, promoted AdipoR1 endocytosis and degradation, and inhibited AdipoR1 biological function. Most importantly, AdipoR1 function was preserved during heart failure development in AdipoR1-KO (AdipoR1 knockout) mice reexpressing hAdipoR1S205A. APN administration in the failing heart reversed post-MI remodeling and improved cardiac function. However, reexpressing hAdipoR1WT in AdipoR1-KO mice failed to restore APN cardioprotection. CONCLUSIONS: Ser205 is responsible for AdipoR1 phosphorylative desensitization in the failing heart. Blockade of AdipoR1 phosphorylation followed by pharmacological APN administration is a novel therapy effective in reversing post-MI remodeling and mitigating heart failure progression.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Adiponectina/metabolismo , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Isquemia/metabolismo , Camundongos , Camundongos Knockout , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo
2.
Circ Res ; 130(1): 48-66, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34763521

RESUMO

BACKGROUND: Patients with acute myocardial infarction suffer systemic metabolic dysfunction via incompletely understood mechanisms. Adipocytes play critical role in metabolic homeostasis. The impact of acute myocardial infarction upon adipocyte function is unclear. Small extracellular vesicles (sEVs) critically contribute to organ-organ communication. Whether and how small extracellular vesicle mediate post-MI cardiomyocyte/adipocyte communication remain unknown. METHODS: Plasma sEVs were isolated from sham control (Pla-sEVSham) or 3 hours after myocardial ischemia/reperfusion (Pla-sEVMI/R) and incubated with adipocytes for 24 hours. Compared with Pla-sEVSham, Pla-sEVMI/R significantly altered expression of genes known to be important in adipocyte function, including a well-known metabolic regulatory/cardioprotective adipokine, APN (adiponectin). Pla-sEVMI/R activated 2 (PERK-CHOP and ATF6 [transcription factor 6]-EDEM [ER degradation enhancing alpha-mannosidase like protein 1] pathways) of the 3 endoplasmic reticulum (ER) stress pathways in adipocytes. These pathological alterations were also observed in adipocytes treated with sEVs isolated from adult cardiomyocytes subjected to in vivo myocardial ischemia/reperfusion (MI/R) (Myo-sEVMI/R). Bioinformatic/RT-qPCR analysis demonstrates that the members of miR-23-27-24 cluster are significantly increased in Pla-sEVMI/R, Myo-sEVMI/R, and adipose tissue of MI/R animals. Administration of cardiomyocyte-specific miR-23-27-24 sponges abolished adipocyte miR-23-27-24 elevation in MI/R animals, supporting the cardiomyocyte origin of adipocyte miR-23-27-24 cluster. In similar fashion to Myo-sEVMI/R, a miR-27a mimic activated PERK-CHOP and ATF6-EDEM-mediated ER stress. Conversely, a miR-27a inhibitor significantly attenuated Myo-sEVMI/R-induced ER stress and restored APN production. RESULTS: An unbiased approach identified EDEM3 (ER degradation enhancing alpha-mannosidase like protein 3) as a novel downstream target of miR-27a. Adipocyte EDEM3 deficiency phenocopied multiple pathological alterations caused by Myo-sEVMI/R, whereas EDEM3 overexpression attenuated Myo-sEVMI/R-resulted ER stress. Finally, administration of GW4869 or cardiomyocyte-specific miR-23-27-24 cluster sponges attenuated adipocyte ER stress, improved adipocyte endocrine function, and restored plasma APN levels in MI/R animals. CONCLUSIONS: We demonstrate for the first time that MI/R causes significant adipocyte ER stress and endocrine dysfunction by releasing miR-23-27-24 cluster-enriched small extracellular vesicle. Targeting small extracellular vesicle-mediated cardiomyocyte-adipocyte pathological communication may be of therapeutic potential to prevent metabolic dysfunction after MI/R.


Assuntos
Adipócitos/metabolismo , Comunicação Celular , Estresse do Retículo Endoplasmático , Vesículas Extracelulares/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Adiponectina/metabolismo , Animais , Masculino , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/metabolismo , Fator de Transcrição CHOP/metabolismo , eIF-2 Quinase/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 43(12): e491-e508, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795615

RESUMO

BACKGROUND: APN (adiponectin) and APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) are potent vasculoprotective molecules, and their deficiency (eg, hypoadiponectinemia) contributes to diabetic vascular complications. However, the molecular mechanisms that govern their vasculoprotective genes as well as their alteration by diabetes remain unknown. METHODS: Diabetic medium-cultured rat aortic endothelial cells, mouse aortic endothelial cells from high-fat-diet animals, and diabetic human aortic endothelial cells were used for molecular/cellular investigations. The in vivo concept-prove demonstration was conducted using diabetic vascular injury and diabetic hindlimb ischemia models. RESULTS: In vivo animal experiments showed that APN replenishment caused APPL1 nuclear translocation, resulting in an interaction with HDAC (histone deacetylase) 2, which inhibited HDAC2 activity and increased H3Kac27 levels. Based on transcriptionome pathway-specific real-time polymerase chain reaction profiling and bioinformatics analysis, Angpt1 (angiopoietin 1), Ocln (occludin), and Cav1 (caveolin 1) were found to be the top 3 vasculoprotective genes suppressed by diabetes and rescued by APN in an APPL1-dependent manner. APN reverses diabetes-induced inhibition of Cav1 interaction with APPL1. APN-induced Cav1 expression was not affected by Angpt1 or Ocln deficiency, whereas APN-induced APPL1 nuclear translocation or upregulation of Angpt1/Ocln expression was abolished in the absence of Cav1 both in vivo and in vitro, suggesting Cav1 is upstream molecule of Angpt1/Ocln in response to APN administration. Chromatin immunoprecipitation-qPCR (quantitative polymerase chain reaction) demonstrated that APN caused significant enrichment of H3K27ac in Angpt1 and Ocln promoter region, an effect blocked by APPL1/Cav1 knockdown or HDAC2 overexpression. The protective effects of APN on the vascular system were attenuated by overexpression of HDAC2 and abolished by knocking out APPL1 or Cav1. The double knockdown of ANGPT1/OCLN blunted APN vascular protection both in vitro and in vivo. Furthermore, in diabetic human endothelial cells, HDAC2 activity is increased, H3 acetylation is decreased, and ANGPT1/OCLN expression is reduced, suggesting that the findings have important translational implications. CONCLUSIONS: Hypoadiponectinemia and dysregulation of APPL1-mediated epigenetic regulation are novel mechanisms leading to diabetes-induced suppression of vasculoprotective gene expression. Diabetes-induced pathological vascular remodeling may be prevented by interventions promoting APPL1 nuclear translocation and inhibiting HDAC2.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Lesões do Sistema Vascular , Animais , Humanos , Camundongos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adiponectina/metabolismo , Diabetes Mellitus/genética , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/prevenção & controle , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Lesões do Sistema Vascular/genética
4.
Circ Res ; 126(7): 857-874, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32079489

RESUMO

RATIONALE: Mesenchymal stromal cell-based therapy is promising against ischemic heart failure. However, its efficacy is limited due to low cell retention and poor paracrine function. A transmembrane protein capable of enhancing cell-cell adhesion, N-cadherin garnered attention in the field of stem cell biology only recently. OBJECTIVE: The current study investigates whether and how N-cadherin may regulate mesenchymal stromal cells retention and cardioprotective capability against ischemic heart failure. METHODS AND RESULTS: Adult mice-derived adipose tissue-derived mesenchymal stromal cells (ADSC) were transfected with adenovirus harboring N-cadherin, T-cadherin, or control adenovirus. CM-DiI-labeled ADSC were intramyocardially injected into the infarct border zone at 3 sites immediately after myocardial infarction (MI) or myocardial ischemia/reperfusion. ADSC retention/survival, cardiomyocyte apoptosis/proliferation, capillary density, cardiac fibrosis, and cardiac function were determined. Discovery-driven/cause-effect analysis was used to determine the molecular mechanisms. Compared with ADSC transfected with adenovirus-control, N-cadherin overexpression (but not T-cadherin) markedly increased engrafted ADSC survival/retention up to 7 days post-MI. Histological analysis revealed that ADSC transfected with adenovirus-N-cadherin significantly preserved capillary density and increased cardiomyocyte proliferation and moderately reduced cardiomyocyte apoptosis 3 days post-MI. More importantly, ADSC transfected with adenovirus-N-cadherin (but not ADSC transfected with adenovirus-T-cadherin) significantly increased left ventricular ejection fraction and reduced fibrosis in both MI and myocardial ischemia/reperfusion mice. In vitro experiments demonstrated that N-cadherin overexpression promoted ADSC-cardiomyocyte adhesion and ADSC migration, enhancing their capability to increase angiogenesis and cardiomyocyte proliferation. MMP (matrix metallopeptidases)-10/13 and HGF (hepatocyte growth factor) upregulation is responsible for N-cadherin's effect upon ADSC migration and paracrine angiogenesis. N-cadherin overexpression promotes cardiomyocyte proliferation by HGF release. Mechanistically, N-cadherin overexpression significantly increased N-cadherin/ß-catenin complex formation and active ß-catenin levels in the nucleus. ß-catenin knockdown abolished N-cadherin overexpression-induced MMP-10, MMP-13, and HGF expression and blocked the cellular actions and cardioprotective effects of ADSC overexpressing N-cadherin. CONCLUSIONS: We demonstrate for the first time that N-cadherin overexpression enhances mesenchymal stromal cells-protective effects against ischemic heart failure via ß-catenin-mediated MMP-10/MMP-13/HGF expression and production, promoting ADSC/cardiomyocyte adhesion and ADSC retention.


Assuntos
Tecido Adiposo/citologia , Caderinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Caderinas/genética , Adesão Celular , Proliferação de Células , Células Cultivadas , Fator de Crescimento de Hepatócito/metabolismo , Metaloproteinase 10 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Traumatismo por Reperfusão Miocárdica/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
5.
Circ Res ; 126(2): 212-228, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694459

RESUMO

RATIONALE: Obstructive sleep apnea-hypopnea syndrome, a sleep breathing disorder in which chronic intermittent hypoxia (CIH) is the primary pathology, is associated with multiple cardiovascular diseases. However, whether and how CIH may affect cardiac remodeling following myocardial infarction (MI) remains unknown. OBJECTIVE: To determine whether CIH exposure at different periods of MI may exacerbate post-MI heart failure and to identify the mechanisms underlying CIH-exacerbated post-MI remodeling. METHODS AND RESULTS: Adult male mice were subjected to MI (4 weeks) with and without CIH (4 or 8 weeks). CIH before MI (CIH+MI) had no significant effect on post-MI remodeling. However, double CIH exposure (CIH+MI+CIH) or CIH only during the MI period (MI+CIH) significantly exacerbated pathological remodeling and reduced survival rate. Mechanistically, CIH activated TGF-ß (tumor growth factor-ß)/Smad (homologs of both the Drosophila protein MAD and the C. elegans protein SMA) signaling and enhanced cardiac epithelial to mesenchymal transition, markedly increasing post-MI cardiac fibrosis. Transcriptome analysis revealed that, among 15 genes significantly downregulated (MI+CIH versus MI), Ctrp9 (a novel cardioprotective cardiokine) was one of the most significantly inhibited genes. Real-time polymerase chain reaction/Western analysis confirmed that cardiomyocyte CTRP9 expression was significantly reduced in MI+CIH mice. RNA-sequencing, real-time polymerase chain reaction, and dual-luciferase reporter assays identified that microRNA-214-3p is a novel Ctrp9 targeting miRNA. Its upregulation is responsible for Ctrp9 gene suppression in MI+CIH. Finally, AAV9 (adeno-associated virus 9)-mediated cardiac-specific CTRP9 overexpression or rCTRP9 (recombinated CTRP9) administration inhibited TGF-ß/Smad and Wnt/ß-catenin pathways, attenuated interstitial fibrosis, improved cardiac function, and enhanced survival rate in MI+CIH animals. CONCLUSIONS: This study provides the first evidence that MI+CIH upregulates miR-214-3p, suppresses cardiac CTRP9 (C1q tumor necrosis factor-related protein-9) expression, and exacerbates cardiac remodeling, suggesting that CTRP9 may be a novel therapeutic target against pathological remodeling in MI patients with obstructive sleep apnea-hypopnea syndrome.


Assuntos
Adiponectina/metabolismo , Glicoproteínas/metabolismo , Hipóxia/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Adiponectina/genética , Animais , Transição Epitelial-Mesenquimal , Glicoproteínas/genética , Humanos , Hipóxia/complicações , Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/complicações , Miocárdio/metabolismo , Miocárdio/patologia , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/genética , Proteínas Smad/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo , Remodelação Ventricular , Via de Sinalização Wnt
6.
Circulation ; 141(12): 968-983, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-31918577

RESUMO

BACKGROUND: Diabetes mellitus exacerbates myocardial ischemia/reperfusion (MI/R) injury by incompletely understood mechanisms. Adipocyte dysfunction contributes to remote organ injury. However, the molecular mechanisms linking dysfunctional adipocytes to increased MI/R injury remain unidentified. The current study attempted to clarify whether and how small extracellular vesicles (sEV) may mediate pathological communication between diabetic adipocytes and cardiomyocytes, exacerbating MI/R injury. METHODS: Adult male mice were fed a normal or a high-fat diet for 12 weeks. sEV (from diabetic serum, diabetic adipocytes, or high glucose/high lipid-challenged nondiabetic adipocytes) were injected intramyocardially distal of coronary ligation. Animals were subjected to MI/R 48 hours after injection. RESULTS: Intramyocardial injection of diabetic serum sEV in the nondiabetic heart significantly exacerbated MI/R injury, as evidenced by poorer cardiac function recovery, larger infarct size, and greater cardiomyocyte apoptosis. Similarly, intramyocardial or systemic administration of diabetic adipocyte sEV or high glucose/high lipid-challenged nondiabetic adipocyte sEV significantly exacerbated MI/R injury. Diabetic epididymal fat transplantation significantly increased MI/R injury in nondiabetic mice, whereas administration of a sEV biogenesis inhibitor significantly mitigated MI/R injury in diabetic mice. A mechanistic investigation identified that miR-130b-3p is a common molecule significantly increased in diabetic serum sEV, diabetic adipocyte sEV, and high glucose/high lipid-challenged nondiabetic adipocyte sEV. Mature (but not primary) miR-130b-3p was significantly increased in the diabetic and nondiabetic heart subjected to diabetic sEV injection. Whereas intramyocardial injection of a miR-130b-3p mimic significantly exacerbated MI/R injury in nondiabetic mice, miR-130b-3p inhibitors significantly attenuated MI/R injury in diabetic mice. Molecular studies identified AMPKα1/α2, Birc6, and Ucp3 as direct downstream targets of miR-130b-3p. Overexpression of these molecules (particularly AMPKα2) reversed miR-130b-3p induced proapoptotic/cardiac harmful effect. Finally, miR-130b-3p levels were significantly increased in plasma sEV from patients with type 2 diabetes mellitus. Incubation of cardiomyocytes with diabetic patient sEV significantly exacerbated ischemic injury, an effect blocked by miR-130b-3p inhibitor. CONCLUSIONS: We demonstrate for the first time that miR-130b-3p enrichment in dysfunctional adipocyte-derived sEV, and its suppression of multiple antiapoptotic/cardioprotective molecules in cardiomyocytes, is a novel mechanism exacerbating MI/R injury in the diabetic heart. Targeting miR-130b-3p mediated pathological communication between dysfunctional adipocytes and cardiomyocytes may be a novel strategy attenuating diabetic exacerbation of MI/R injury.


Assuntos
Adipócitos/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Animais , Humanos , Masculino , Camundongos
7.
Circulation ; 140(9): 751-764, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31220942

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion (MI/R) injury is a significant clinical problem without effective therapy. Unbiased omics approaches may reveal key MI/R mediators to initiate MI/R injury. METHODS: We used a dynamic transcriptome analysis of mouse heart exposed to various MI/R periods to identify S100a8/a9 as an early mediator. Using loss/gain-of-function approaches to understand the role of S100a8/a9 in MI/R injury, we explored the mechanisms through transcriptome and functional experiment. Dynamic serum S100a8/a9 levels were measured in patients with acute myocardial infarction before and after percutaneous coronary intervention. Patients were prospectively followed for the occurrence of major adverse cardiovascular events. RESULTS: S100a8/a9 was identified as the most significantly upregulated gene during the early reperfusion stage. Knockout of S100a9 markedly decreased cardiomyocyte death and improved heart function, whereas hematopoietic overexpression of S100a9 exacerbated MI/R injury. Transcriptome/functional studies revealed that S100a8/a9 caused mitochondrial respiratory dysfunction in cardiomyocytes. Mechanistically, S100a8/a9 downregulated NDUF gene expression with subsequent mitochondrial complex I inhibition via Toll-like receptor 4/Erk-mediated Pparg coactivator 1 alpha/nuclear respiratory factor 1 signaling suppression. Administration of S100a9 neutralizing antibody significantly reduced MI/R injury and improved cardiac function. Finally, we demonstrated that serum S100a8/a9 levels were significantly increased 1 day after percutaneous coronary intervention in patients with acute myocardial infarction, and elevated S100a8/a9 levels were associated with the incidence of major adverse cardiovascular events. CONCLUSIONS: Our study identified S100a8/a9 as a master regulator causing cardiomyocyte death in the early stage of MI/R injury via the suppression of mitochondrial function. Targeting S100a8/a9-intiated signaling may represent a novel therapeutic intervention against MI/R injury. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03752515.


Assuntos
Apoptose , Calgranulina B/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Calgranulina A/sangue , Calgranulina B/genética , Calgranulina B/imunologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/etiologia , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/cirurgia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Intervenção Coronária Percutânea , Transdução de Sinais
8.
Clin Sci (Lond) ; 134(18): 2453-2467, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940654

RESUMO

Hypertensive patients have impaired sodium excretion. However, the mechanisms are incompletely understood. Despite the established association between obesity/excess adiposity and hypertension, whether and how adiponectin, one of the adipokines, contributes to impaired sodium excretion in hypertension has not been previously investigated. The current study tested the hypothesis that adiponectin promotes natriuresis and diuresis in the normotensive state. However, impaired adiponectin-mediated natriuresis and diuresis are involved in pathogenesis of hypertension. We found that sodium excretion was reduced in adiponectin knockout (Adipo-/-) mice; intrarenal arterial infusion of adiponectin-induced natriuresis and diuresis in Wistar-Kyoto (WKY) rats. However, the natriuretic and diuretic effects of adiponectin were impaired in spontaneously hypertensive rats (SHRs), which were ascribed to the hyperphosphorylation of adiponectin receptor and subsequent uncoupling from Gαi. Inhibition of adiponectin receptor phosphorylation by a specific point mutation restored its coupling with Gαi and the adiponectin-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule (RPT) cells from SHRs. Finally, we identified G protein-coupled receptor kinase 4 (GRK4) as a mediator of adiponectin receptor hyperphosphorylation; mice transgenic for a hyperphosphorylating variant of GRK4 replicated the abnormal adiponectin function observed in SHRs, whereas down-regulation of GRK4 by renal ultrasound-directed small interfering RNA (siRNA) restored the adiponectin-mediated sodium excretion and reduced the blood pressure in SHRs. We conclude that the stimulatory effect of adiponectin on sodium excretion is impaired in hypertension, which is ascribed to the increased renal GRK4 expression and activity. Targeting GRK4 restores impaired adiponectin-mediated sodium excretion in hypertension, thus representing a novel strategy against hypertension.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Receptores de Adiponectina/metabolismo , Sódio/metabolismo , Adiponectina/metabolismo , Animais , Pressão Sanguínea , Linhagem Celular , Diurese , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipertensão/fisiopatologia , Camundongos Transgênicos , Mutação/genética , Natriurese , Fosforilação , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
9.
J Biol Chem ; 293(36): 14001-14011, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30006349

RESUMO

The relaxin family peptides have been shown to exert several beneficial effects on the heart, including anti-apoptosis, anti-fibrosis, and anti-hypertrophy activity. Understanding their regulation might provide new opportunities for therapeutic interventions, but the molecular mechanism(s) coordinating relaxin expression in the heart remain largely obscured. Previous work demonstrated a role for the orphan nuclear receptor Nur77 in regulating cardiomyocyte apoptosis. We therefore investigated Nur77 in the hopes of identifying novel relaxin regulators. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) data indicated that ectopic expression of orphan nuclear receptor Nur77 markedly increased the expression of latexin-3 (RLN3), but not relaxin-1 (RLN1), in neonatal rat ventricular cardiomyocytes (NRVMs). Furthermore, we found that the ß-adrenergic agonist isoproterenol (ISO) markedly stimulated RLN3 expression, and this stimulation was significantly attenuated in Nur77 knockdown cardiomyocytes and Nur77 knockout hearts. We showed that Nur77 significantly increased RLN3 promoter activity via specific binding to the RLN3 promoter, as demonstrated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Furthermore, we found that Nur77 overexpression potently inhibited ISO-induced cardiomyocyte apoptosis, whereas this protective effect was significantly attenuated in RLN3 knockdown cardiomyocytes, suggesting that Nur77-induced RLN3 expression is an important mediator for the suppression of cardiomyocyte apoptosis. These findings show that Nur77 regulates RLN3 expression, therefore suppressing apoptosis in the heart, and suggest that activation of Nur77 may represent a useful therapeutic strategy for inhibition of cardiac fibrosis and heart failure.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/citologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Relaxina/metabolismo , Animais , Isoproterenol/farmacologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Ratos , Relaxina/genética , Transcrição Gênica , Regulação para Cima
10.
Sheng Li Xue Bao ; 71(3): 485-490, 2019 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-31218340

RESUMO

The incidence and mortality rates of diabetes with cardiovascular complications are continually rising, and diabetic cardiovascular disease is becoming a major public health issue that threatens human health. Acute endothelial dysfunction and chronic cellular damage caused by diabetes are important risk factors for diabetic cardiovascular disease and related mortality. Adiponectin is an adipocyte-derived molecule with significant cytoprotective effects, including the protection against diabetes-induced vascular endothelial injury. Here we review the mechanisms of adiponectin protective effects on acute vascular endothelial dysfunction and chronic structural damage induced by diabetes.


Assuntos
Adiponectina/fisiologia , Doenças Cardiovasculares/complicações , Diabetes Mellitus/patologia , Endotélio Vascular/fisiopatologia , Humanos
11.
Circulation ; 135(21): 2041-2057, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28249877

RESUMO

BACKGROUND: Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. METHODS: We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. RESULTS: ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factor-ß signaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. CONCLUSIONS: Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factor-ß signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive cardiac remodeling.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Fibroblastos/enzimologia , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/prevenção & controle , MAP Quinase Quinase 3/metabolismo , Miocárdio/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Acetilação , Fator 3 Ativador da Transcrição/deficiência , Fator 3 Ativador da Transcrição/genética , Angiotensina II , Animais , Sítios de Ligação , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose , Predisposição Genética para Doença , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Histona Desacetilase 1/metabolismo , Histonas/metabolismo , Humanos , Hipertensão/induzido quimicamente , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , MAP Quinase Quinase 3/genética , Masculino , Camundongos Knockout , Miocárdio/patologia , Fenótipo , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
12.
Circulation ; 136(22): 2162-2177, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-28978553

RESUMO

BACKGROUND: Cell therapy remains the most promising approach against ischemic heart injury. However, the poor survival of engrafted stem cells in the ischemic environment limits their therapeutic efficacy for cardiac repair after myocardial infarction. CTRP9 (C1q/tumor necrosis factor-related protein-9) is a novel prosurvival cardiokine with significantly downregulated expression after myocardial infarction. Here we tested a hypothesis that CTRP9 might be a cardiokine required for a healthy microenvironment promoting implanted stem cell survival and cardioprotection. METHODS: Mice were subjected to myocardial infarction and treated with adipose-derived mesenchymal stem cells (ADSCs, intramyocardial transplantation), CTRP9, or their combination. Survival, cardiac remodeling and function, cardiomyocytes apoptosis, and ADSCs engraftment were evaluated. Whether CTRP9 directly regulates ADSCs function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms of CTRP9. RESULTS: Administration of ADSCs alone failed to exert significant cardioprotection. However, administration of ADSCs in addition to CTRP9 further enhanced the cardioprotective effect of CTRP9 (P<0.05 or P<0.01 versus CTRP9 alone), suggesting a synergistic effect. Administration of CTRP9 at a dose recovering physiological CTRP9 levels significantly prolonged ADSCs retention/survival after implantation. Conversely, the number of engrafted ADSCs was significantly reduced in the CTRP9 knockout heart. In vitro study demonstrated that CTRP9 promoted ADSCs proliferation and migration, and it protected ADSCs against hydrogen peroxide-induced cellular death. CTRP9 enhances ADSCs proliferation/migration by extracellular regulated protein kinases (ERK)1/2-matrix metallopeptidase 9 signaling and promotes antiapoptotic/cell survival via ERK-nuclear factor erythroid-derived 2-like 2/antioxidative protein expression. N-cadherin was identified as a novel CTRP9 receptor mediating ADSCs signaling. Blockade of either N-cadherin or ERK1/2 completely abolished the previously noted CTRP9 effects. Although CTRP9 failed to promote ADSCs cardiogenic differentiation, CTRP9 promotes superoxide dismutase 3 expression and secretion from ADSCs, protecting cardiomyocytes against oxidative stress-induced cell death. CONCLUSIONS: We provide the first evidence that CTRP9 promotes ADSCs proliferation/survival, stimulates ADSCs migration, and attenuates cardiomyocyte cell death by previously unrecognized signaling mechanisms. These include binding with N-cadherin, activation of ERK-matrix metallopeptidase 9 and ERK-nuclear factor erythroid-derived 2-like 2 signaling, and upregulation/secretion of antioxidative proteins. These results suggest that CTRP9 is a cardiokine critical in maintaining a healthy microenvironment facilitating stem cell engraftment in infarcted myocardial tissue, thereby enhancing stem cell therapeutic efficacy.


Assuntos
Adiponectina/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/metabolismo , Regeneração , Transdução de Sinais , Adiponectina/administração & dosagem , Adiponectina/deficiência , Adiponectina/genética , Tecido Adiposo/citologia , Animais , Apoptose , Caderinas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Glicoproteínas/administração & dosagem , Glicoproteínas/deficiência , Glicoproteínas/genética , Proteínas de Fluorescência Verde/genética , Peróxido de Hidrogênio/toxicidade , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Nicho de Células-Tronco , Superóxido Dismutase/metabolismo , Fatores de Tempo
14.
Circ J ; 81(7): 920-928, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28603178

RESUMO

Cardiovascular disease (CVD) is the greatest cause of death, accounting for nearly one-third of all deaths worldwide. The increase in obesity rates over 3 decades is widespread and threatens the public health in both developed and developing countries. Obesity, the excessive accumulation of visceral fat, causes the clustering of metabolic disorders, such as type 2 diabetes, dyslipidemia, and hypertension, culminating in the development of CVD. Adipose tissue is not only an energy storage organ, but an active endocrine tissue producing various biologically active proteins known as adipokines. Since leptin, a central regulator of food intake and energy expenditure, was demonstrated to be an adipose-specific adipokine, attention has focused on the identification and characterization of unknown adipokines to clarify the mechanisms underlying obesity-related disorders. Numerous adipokines have been identified in the past 2 decades; most adipokines are upregulated in the obese state. Adipokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1ß, and resistin are pro-inflammatory, and exacerbate various metabolic and cardiovascular diseases. However, a small number of adipokines, including adiponectin, are decreased by obesity, and generally exhibit antiinflammatory properties and protective functions against obesity-related diseases. Collectively, an imbalance in the production of pro- and antiinflammatory adipokines in the obese condition results in multiple complications. In this review, we focus on the pathophysiologic roles of adipokines with cardiovascular protective properties.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo , Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Dislipidemias , Hipertensão , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dislipidemias/complicações , Dislipidemias/metabolismo , Dislipidemias/patologia , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/patologia
16.
Circulation ; 131(16): 1392-404, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25696921

RESUMO

BACKGROUND: Phosphorylative desensitization of G-protein-coupled receptors contributes significantly to post-myocardial infarction (MI) remodeling and heart failure (HF). Here, we determined whether adiponectin receptors (AdipoRs) 1 and 2 (the 7-transmembrane domain-containing receptors mediating adiponectin functions) are phosphorylatively modified and functionally impaired after MI. METHODS AND RESULTS: Post-MI HF was induced by coronary artery occlusion. Receptor phosphorylation, kinase expression, and adiponectin function were determined via in vivo, ex vivo, and in vitro models. AdipoR1 and AdipoR2 are not phosphorylated in the normal heart. However, AdipoR1 was significantly phosphorylated after MI, peaking at 7 days and remaining significantly phosphorylated thereafter. The extent of post-MI AdipoR1 phosphorylation positively correlated with the expression level of GPCR kinase (GRK) 2, the predominant GRK isoform upregulated in the failing heart. Cardiac-specific GRK2 knockout virtually abolished post-MI AdipoR1 phosphorylation, whereas virus-mediated GRK2 overexpression significantly phosphorylated AdipoR1 and blocked adiponectin metabolic-regulatory/anti-inflammatory signaling. Mass spectrometry identified serine-7, threonine-24, and threonine-53 (residues located in the n-terminal intracellular AdipoR1 region) as the GRK2 phosphorylation sites. Ex vivo experiments demonstrated that adenosine monophosphate-activated protein kinase activation and the anti-tumor necrosis factor-α effect of adiponectin were significantly inhibited in cardiomyocytes isolated from nonischemic area 7 days after MI. In vivo experiments demonstrated that acute adiponectin administration-induced cardiac GLUT4 translocation and endothelial nitric oxide synthase phosphorylation were blunted 7 days after MI. Continuous adiponectin administration beginning 7 days after MI failed to protect the heart from adverse remodeling and HF progression. Finally, cardiac-specific GRK2 knockdown restored the cardioprotective effect of adiponectin. CONCLUSION: AdipoR1 is phosphorylatively modified and desensitized by GRK2 in failing cardiomyocytes, contributing to post-MI remodeling and HF progression.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Insuficiência Cardíaca/enzimologia , Processamento de Proteína Pós-Traducional , Receptores de Adiponectina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/antagonistas & inibidores , Adiponectina/farmacologia , Animais , Células Cultivadas , Quinase 2 de Receptor Acoplado a Proteína G/deficiência , Quinase 2 de Receptor Acoplado a Proteína G/genética , Terapia Genética , Vetores Genéticos/uso terapêutico , Transportador de Glucose Tipo 4/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/complicações , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fosforilação , Proteínas Recombinantes de Fusão/metabolismo , Transdução Genética
17.
Circ Res ; 114(5): 792-805, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24397980

RESUMO

RATIONALE: Anti-inflammatory and vascular protective actions of adiponectin are well recognized. However, many fundamental questions remain unanswered. OBJECTIVE: The current study attempted to identify the adiponectin receptor subtype responsible for adiponectin's vascular protective action and investigate the role of ceramidase activation in adiponectin anti-inflammatory signaling. METHODS AND RESULTS: Adiponectin significantly reduced tumor necrosis factor (TNF)α-induced intercellular adhesion molecule-1 expression and attenuated TNFα-induced oxidative/nitrative stress in human umbilical vein endothelial cells. These anti-inflammatory actions were virtually abolished by adiponectin receptor 1 (AdipoR1-), but not AdipoR2-, knockdown (KD). Treatment with adiponectin significantly increased neutral ceramidase (nCDase) activity (3.7-fold; P<0.01). AdipoR1-KD markedly reduced globular adiponectin-induced nCDase activation, whereas AdipoR2-KD only slightly reduced. More importantly, small interfering RNA-mediated nCDase-KD markedly blocked the effect of adiponectin on TNFα-induced intercellular adhesion molecule-1 expression. AMP-activated protein kinase-KD failed to block adiponectin-induced nCDase activation and modestly inhibited adiponectin anti-inflammatory effect. In contrast, in caveolin-1 KD (Cav1-KD) cells, >87% of adiponectin-induced nCDase activation was lost. Whereas adiponectin treatment failed to inhibit TNFα-induced intercellular adhesion molecule-1 expression, treatment with sphingosine-1-phosphate or SEW (sphingosine-1-phosphate receptor agonist) remained effective in Cav1-KD cells. AdipoR1 and Cav1 colocalized and coprecipitated in human umbilical vein endothelial cells. Adiponectin treatment did not affect this interaction. There is weak basal Cav1/nCDase interaction, which significantly increased after adiponectin treatment. Knockout of AdipoR1 or Cav1 abolished the inhibitory effect of adiponectin on leukocyte rolling and adhesion in vivo. CONCLUSIONS: These results demonstrate for the first time that adiponectin inhibits TNFα-induced inflammatory response via Cav1-mediated ceramidase recruitment and activation in an AdipoR1-dependent fashion.


Assuntos
Adiponectina/metabolismo , Caveolina 1/metabolismo , Ceramidases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vasculite/metabolismo , Adiponectina/imunologia , Caveolina 1/genética , Caveolina 1/imunologia , Ceramidases/genética , Ceramidases/imunologia , Células Endoteliais/imunologia , Ativação Enzimática/imunologia , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Migração e Rolagem de Leucócitos/imunologia , RNA Interferente Pequeno/genética , Espécies Reativas de Nitrogênio/imunologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Adiponectina/genética , Receptores de Adiponectina/imunologia , Receptores de Adiponectina/metabolismo , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/imunologia , Vasculite/imunologia
18.
Am J Physiol Endocrinol Metab ; 308(10): E891-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25783894

RESUMO

Prevalence and severity of postmyocardial infarction heart failure continually escalate in type 2 diabetes via incompletely understood mechanisms. The discovery of the cardiac secretomes, collectively known as "cardiokines", has significantly enhanced appreciation of the local microenvironment's influence on disease development. Recent studies demonstrated that C1q-TNF-related protein-9 (CTRP9), a newly discovered adiponectin (APN) paralog, is highly expressed in the heart. However, its relationship with APN (concerning diabetic cardiovascular injury in particular) remains unknown. Plasma CTRP9 levels are elevated in APN knockout and reduced in diabetic mice. In contrast to APN, which circulates as full-length multimers, CTRP9 circulates in the plasma primarily in the globular domain isoform (gCTRP9). Recombinant full-length CTRP9 (fCTRP9) was cleaved when incubated with cardiac tissue extracts, generating gCTRP9, a process inhibited by protease inhibitor cocktail. gCTRP9 rapidly activates cardiac survival kinases, including AMPK, Akt, and endothelial NOS. However, fCTRP9-mediated kinase activation is much less potent and significantly delayed. Kinase activation by fCTRP9, but not gCTRP9, is inhibited by protease inhibitor cocktail. These results demonstrate for the first time that the novel cardiokine CTRP9 undergoes proteolytic cleavage to generate gCTRP9, the dominant circulatory and actively cardioprotective isoform. Enhancing cardiac CTRP9 production and/or its proteolytic posttranslational modification are of therapeutic potential, attenuating diabetic cardiac injury.


Assuntos
Adiponectina/química , Adiponectina/metabolismo , Cardiotônicos , Domínio Catalítico/genética , Glicoproteínas/química , Glicoproteínas/metabolismo , Proteólise , Células 3T3-L1 , Adiponectina/genética , Adiponectina/farmacologia , Animais , Cardiotônicos/química , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/prevenção & controle , Dieta Hiperlipídica , Glicoproteínas/genética , Glicoproteínas/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia
19.
Am J Physiol Endocrinol Metab ; 309(3): E275-82, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26037251

RESUMO

Adiponectin (APN) is a cardioprotective molecule. Its reduction in diabetes exacerbates myocardial ischemia/reperfusion (MI/R) injury. Although APN administration in animals attenuates MI/R injury, multiple factors limit its clinical application. The current study investigated whether AdipoRon, the first orally active molecule that binds APN receptors, may protect the heart against MI/R injury, and if so, to delineate the involved mechanisms. Wild-type (WT), APN knockout (APN-KO), and cardiomyocyte specific-AMPK dominant negative (AMPK-DN) mice were treated with vehicle or AdipoRon (50 mg/kg, 10 min prior to MI) and subjected to MI/R (30 min/3-24 h). Compared with vehicle, oral administration of AdipoRon to WT mice significantly improved cardiac function and attenuated postischemic cardiomyocyte apoptosis, determined by DNA ladder formation, TUNEL staining, and caspase-3 activation (all P < 0.01). MI/R-induced apoptotic cell death was significantly enhanced in mice deficient in either APN (APN-KO) or AMPK (AMPK-DN). In APN-KO mice, AdipoRon attenuated MI/R injury to the same degree as observed in WT mice. In AMPK-DN mice, AdipoRon's antiapoptotic action was partially inhibited but not lost. Finally, AdipoRon significantly attenuated postischemic oxidative stress, as evidenced by reduced NADPH oxidase expression and superoxide production. Collectively, these results demonstrate for the first time that AdipoRon, an orally active APN receptor activator, effectively attenuated postischemic cardiac injury, supporting APN receptor agonists as a promising novel therapeutic approach treating cardiovascular complications caused by obesity-related disorders such as type 2 diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Receptores de Adiponectina/agonistas , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Adiponectina/genética , Adiponectina/metabolismo , Administração Oral , Animais , Cardiotônicos/administração & dosagem , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos Knockout , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Piperidinas/administração & dosagem , Piperidinas/uso terapêutico , Distribuição Aleatória , Receptores de Adiponectina/metabolismo
20.
J Neurochem ; 135(3): 453-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303065

RESUMO

Brain-derived neurotrophic factor (BDNF) has been implicated in the potent modulation of synaptic plasticity at both pre-synaptic and post-synaptic sites. However, the molecular mechanism underlying BDNF-mediated pre-synaptic modulation remains incompletely understood. Here, we report that BDNF treatment for over 4 h could significantly enhance the expression of c-Jun NH2-terminal kinase-interacting protein 3 (JIP3) in cultured hippocampal neurons. This enhancement could be blocked by the Trk inhibitor K252a or by a cAMP response element-binding protein (CREB) inhibitor. In addition, chromatin immunoprecipitation (ChIP) assays revealed that CREB could bind with the JIP3 promoter region and the BDNF treatment could increase this binding. Using dual-luciferase assays we further characterized the cAMP response element (CRE) site in the JIP3 promoter. Finally, we found that BDNF-increased JIP3 expression contributes to the BDNF-induced modulation of neurotransmitter release. Together, our studies reveal that in hippocampal neurons BDNF up-regulates JIP3 expression via CREB activation, which contributes to the enhancement of neurotransmitter release; thus, we have identified a novel mechanism that BDNF modulates pre-synaptic transmission.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína Quinase 10 Ativada por Mitógeno/biossíntese , Regulação para Cima/fisiologia , Animais , Proteína de Ligação a CREB/metabolismo , Células Cultivadas , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camundongos , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA