Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38058186

RESUMO

Genome-wide association studies (GWAS) have identified thousands of disease-associated non-coding variants, posing urgent needs for functional interpretation. Molecular Quantitative Trait Loci (xQTLs) such as eQTLs serve as an essential intermediate link between these non-coding variants and disease phenotypes and have been widely used to discover disease-risk genes from many population-scale studies. However, mining and analyzing the xQTLs data presents several significant bioinformatics challenges, particularly when it comes to integration with GWAS data. Here, we developed xQTLbiolinks as the first comprehensive and scalable tool for bulk and single-cell xQTLs data retrieval, quality control and pre-processing from public repositories and our integrated resource. In addition, xQTLbiolinks provided a robust colocalization module through integration with GWAS summary statistics. The result generated by xQTLbiolinks can be flexibly visualized or stored in standard R objects that can easily be integrated with other R packages and custom pipelines. We applied xQTLbiolinks to cancer GWAS summary statistics as case studies and demonstrated its robust utility and reproducibility. xQTLbiolinks will profoundly accelerate the interpretation of disease-associated variants, thus promoting a better understanding of disease etiologies. xQTLbiolinks is available at https://github.com/lilab-bioinfo/xQTLbiolinks.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Fenótipo , Biologia Computacional , Polimorfismo de Nucleotídeo Único
2.
Nucleic Acids Res ; 51(D1): D1046-D1052, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36043442

RESUMO

Functional interpretation of disease-associated non-coding variants remains a significant challenge in the post-GWAS era. Our recent study has identified 3'UTR alternative polyadenylation (APA) quantitative trait loci (3'aQTLs) and connects APA events with QTLs as a major driver of human traits and diseases. Besides 3'UTR, APA events can also occur in intron regions, and increasing evidence has connected intronic polyadenylation with disease risk. However, systematic investigation of the roles of intronic polyadenylation in human diseases remained challenging due to the lack of a comprehensive database across a variety of human tissues. Here, we developed ipaQTL-atlas (http://bioinfo.szbl.ac.cn/ipaQTL) as the first comprehensive portal for intronic polyadenylation. The ipaQTL-atlas is based on the analysis of 15 170 RNA-seq data from 838 individuals across 49 Genotype-Tissue Expression (GTEx v8) tissues and contains ∼0.98 million SNPs associated with intronic APA events. It provides an interface for ipaQTLs search, genome browser, boxplots, and data download, as well as the visualization of GWAS and ipaQTL colocalization results. ipaQTL-atlas provides a one-stop portal to access intronic polyadenylation information and could significantly advance the discovery of APA-associated disease susceptibility genes.


Assuntos
Íntrons , Poliadenilação , Locos de Características Quantitativas , Humanos , Regiões 3' não Traduzidas/genética , Íntrons/genética , Perfilação da Expressão Gênica , Atlas como Assunto
3.
BMC Genomics ; 25(1): 158, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331736

RESUMO

BACKGROUND: Studies have confirmed that Infectious bovine rhinotracheitis virus (IBRV) infection induces mitochondrial damage. MicroRNAs (miRNAs) are a class of noncoding RNA molecules, which are involved in various biological processes and pathological changes associated with mitochondrial damage. It is currently unclear whether miRNAs participate in IBRV-induced mitochondrial damage in Madin-Darby bovine kidney (MDBK) cells. RESULTS: In the present study, we used high-throughput sequencing technology, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to screen for mitochondria-related miRNAs and messenger RNAs (mRNAs). In total, 279 differentially expressed miRNAs and 832 differentially expressed mRNAs were identified in 6 hours (IBRV1) versus 24 hours (IBRV2) after IBRV infection in MDBK cells. GO and KEGG enrichment analysis revealed that 42 differentially expressed mRNAs and 348 target genes of differentially expressed miRNAs were correlated with mitochondrial damage, and the miRNA-mitochondria-related target genes regulatory network was constructed to elucidate their potential regulatory relationships. Among the 10 differentially expressed miRNAs, 8 showed expression patterns consistent with the high-throughput sequencing results. Functional validation results showed that overexpression of miR-10a and miR-182 aggravated mitochondrial damage, while inhibition of miR-10a and miR-182 alleviated mitochondrial damage. CONCLUSIONS: This study not only revealed the expression changes of miRNAs and mRNAs in IBRV-infected MDBK cells, but also revealed possible biological regulatory relationship between them. MiR-10a and miR-182 may have the potential to be developed as biomarkers for the diagnosis and treatment of IBRV. Together, Together, these data and analyses provide additional insights into the roles of miRNA and mRNA in IBRV-induced mitochondria damage.


Assuntos
Herpesvirus Bovino 1 , MicroRNAs , Animais , Bovinos , MicroRNAs/genética , MicroRNAs/metabolismo , Herpesvirus Bovino 1/genética , Células Epiteliais/metabolismo , Rim/metabolismo , Redes Reguladoras de Genes , RNA Mensageiro/genética , Perfilação da Expressão Gênica
4.
BMC Microbiol ; 24(1): 249, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977999

RESUMO

Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that mainly causes fatal lung and extrapulmonary abscesses in foals and immunocompromised individuals. To date, no commercial vaccine against R. equi exists. We previously screened all potential vaccine candidates from the complete genome of R. equi using a reverse vaccinology approach. Five of these candidates, namely ABC transporter substrate-binding protein (ABC transporter), penicillin-binding protein 2 (PBD2), NlpC/P60 family protein (NlpC/P60), esterase family protein (Esterase), and M23 family metallopeptidase (M23) were selected for the evaluation of immunogenicity and immunoprotective effects in BALB/c mice model challenged with R. equi. The results showed that all five vaccine candidate-immunized mice experienced a significant increase in spleen antigen-specific IFN-γ- and TNF-α-positive CD4 + and CD8 + T lymphocytes and generated robust Th1- and Th2-type immune responses and antibody responses. Two weeks after the R. equi challenge, immunization with the five vaccine candidates reduced the bacterial load in the lungs and improved the pathological damage to the lungs and livers compared with those in the control group. NlpC/P60, Esterase, and M23 were more effective than the ABC transporter and PBD2 in inducing protective immunity against R. equi challenge in mice. In addition, these vaccine candidates have the potential to induce T lymphocyte memory immune responses in mice. In summary, these antigens are effective candidates for the development of protective vaccines against R. equi. The R. equi antigen library has been expanded and provides new ideas for the development of multivalent vaccines.


Assuntos
Infecções por Actinomycetales , Vacinas Bacterianas , Modelos Animais de Doenças , Imunidade Humoral , Camundongos Endogâmicos BALB C , Rhodococcus equi , Animais , Rhodococcus equi/imunologia , Rhodococcus equi/genética , Camundongos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Actinomycetales/prevenção & controle , Infecções por Actinomycetales/imunologia , Infecções por Actinomycetales/microbiologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Imunidade Celular , Feminino , Pulmão/microbiologia , Pulmão/imunologia , Pulmão/patologia , Carga Bacteriana , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Interferon gama/imunologia , Interferon gama/metabolismo
5.
Cytokine ; 173: 156421, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944420

RESUMO

BACKGROUND: The Shiga toxin-producing Escherichia coli (STEC) infects animals and induces acute intestinal inflammation. Long non-coding RNAs (lncRNAs) are known to play crucial roles in modulating inflammation response. However, it is not clear whether lncRNAs are involved in STEC-induced inflammation. METHODS AND RESULTS: To understand the association of lncRNAs with STEC infection, we used RNA-seq technology to analyze the profiles of lncRNAs in Mock-infected and STEC-infected human intestinal epithelial cells (HIECs). We detected a total of 702 lncRNAs differentially expressed by STEC infection. 583 differentially expressed lncRNAs acted as competitive microRNAs (miRNAs) binding elements in regulating the gene expression involved in TNF signaling pathway, IL-17 signaling pathway, PI3K-Akt signaling pathway, and apoptosis pathways. We analyzed 3 targeted genes, TRADD, TRAF1 and TGFB2, which were differentially regulated by mRNA-miRNA-lncRNA interaction network, potentially involved in the inflammatory and apoptotic response to STEC infection. Functional analysis of up/downstream genes associated with differentially expressed lncRNAs revealed their role in adheres junction and endocytosis. We also used the qRT-PCR technique to validate 8 randomly selected differentially expressed lncRNAs and mRNAs in STEC-infected HIECs. CONCLUSION: Our results, for the first time, revealed differentially expressed lncRNAs induced by STEC infection of HIECs. The results will help investigate the molecular mechanisms for the inflammatory responses induced by STEC.


Assuntos
MicroRNAs , RNA Longo não Codificante , Escherichia coli Shiga Toxigênica , Animais , Humanos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , Fosfatidilinositol 3-Quinases/genética , MicroRNAs/genética , Inflamação , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica
6.
Arch Microbiol ; 206(7): 335, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953983

RESUMO

Salmonella is considered as one of the most common zoonotic /foodborne pathogens in the world. The application of bacteriophages as novel antibacterial agents in food substrates has become an emerging strategy. Bacteriophages have the potential to control Salmonella contamination.We have isolated and characterized a broad-spectrum Salmonella phage, SP154, which can lyse 9 serotypes, including S. Enteritidis, S. Typhimurium, S. Pullorum, S. Arizonae, S. Dublin, S. Cholerasuis, S. Chester, S. 1, 4, [5], 12: i: -, and S. Derby, accounting for 81.9% of 144 isolates. SP154 showed a short latent period (40 min) and a high burst size (with the first rapid burst size at 107 PFUs/cell and the second rapid burst size at approximately 40 PFUs/cell). Furthermore, SP154 activity has higher survival rates across various environmental conditions, including pH 4.0-12.0 and temperatures ranging from 4 to 50 °C for 60 min, making it suitable for diverse food processing and storage applications. Significant reductions in live Salmonella were observed in different foods matrices such as milk and chicken meat, with a decrease of up to 1.9 log10 CFU/mL in milk contamination and a 1 log10 CFU/mL reduction in chicken meat. Whole genome sequencing analysis revealed that SP154 belongs to the genus Ithacavirus, subfamily Humphriesvirinae, within the family Schitoviridae. Phylogenetic analysis based on the terminase large subunit supported this classification, although an alternate tree using the tail spike protein gene suggested affiliation with the genus Kuttervirus, underscoring the limitations of relying on a single gene for phylogenetic inference. Importantly, no virulence or antibiotic resistance genes were detected in SP154. Our research highlights the potential of using SP154 for biocontrol of Salmonella in the food industry.


Assuntos
Microbiologia de Alimentos , Genoma Viral , Fagos de Salmonella , Salmonella , Sequenciamento Completo do Genoma , Fagos de Salmonella/genética , Fagos de Salmonella/isolamento & purificação , Fagos de Salmonella/classificação , Fagos de Salmonella/fisiologia , Animais , Salmonella/virologia , Salmonella/genética , Salmonella/classificação , Salmonella/isolamento & purificação , Galinhas , Leite/microbiologia , Leite/virologia , Carne/microbiologia , Carne/virologia , Filogenia
7.
Nucleic Acids Res ; 50(D1): D1456-D1467, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34534340

RESUMO

With the accumulation of massive data sets from high-throughput experiments and the rapid emergence of new types of omics data, gene sets have become more diverse and essential for the refinement of gene annotation at multidimensional levels. Accordingly, we collected and defined 236 007 gene sets across different categories for 44 plant species in the Plant Gene Set Annotation Database (PlantGSAD). These gene sets were divided into nine main categories covering many functional subcategories, such as trait ontology, co-expression modules, chromatin states, and liquid-liquid phase separation. The annotations from the collected gene sets covered all of the genes in the Brassicaceae species Arabidopsis and Poaceae species Oryza sativa. Several GSEA tools are implemented in PlantGSAD to improve the efficiency of the analysis, including custom SEA for a flexible strategy based on customized annotations, SEACOMPARE for the cross-comparison of SEA results, and integrated visualization features for ontological analysis that intuitively reflects their parent-child relationships. In summary, PlantGSAD provides numerous gene sets for multiple plant species and highly efficient analysis tools. We believe that PlantGSAD will become a multifunctional analysis platform that can be used to predict and elucidate the functions and mechanisms of genes of interest. PlantGSAD is publicly available at http://systemsbiology.cau.edu.cn/PlantGSEAv2/.


Assuntos
Bases de Dados Genéticas , Anotação de Sequência Molecular , Plantas/classificação , Software , Cromatina/genética , Plantas/genética
8.
Luminescence ; 39(1): e4680, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286607

RESUMO

As an oxidant, deodorant and bleaching agent, the hypochlorous acid (HClO) and hypochlorite (ClO- ) are widely used in corrosion inhibitors, textile dyes, pharmaceutical intermediates and in our daily lives. However, excess usage or aberrant accumulation of ClO- leads to tissue damage or some diseases and even cancer. Therefore, it is necessary to develop a fluorescent probe that specifically identifies ClO- . In this article, we synthesized a deep-red xanthene-based fluorescent probe (XA-CN). The strong electron deficient group dicyano endows the probe XA-CN deep-red fluorescent emission with high solubility, selectivity and sensitivity for ClO- detection. Studies showed that the probe demonstrated turn-off fluorescence (643 nm) at the presence of ClO- in dimethylsulfoxide/phosphate-buffered saline 1:1 (pH 9) solution with a limit of detection of 1.64 µM. Detection mechanism investigation revealed that the electron deficient group -CN and the hydroxyl group was oxidized into aldehyde or carbonyl groups at the presence of ClO- , resulting ultraviolet-visible absorption of the probe blue shifted and turned-off fluorescence. Furthermore, XA-CN was successfully used for the detection of ClO- in tap water samples.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Água , Microscopia de Fluorescência , Oxidantes
9.
Inflammopharmacology ; 32(4): 2555-2574, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38767761

RESUMO

Ulcerative colitis (UC) is a chronic idiopathic inflammatory bowel disease with a relapsing-remitting course. Although its etiology remains unknown, excessive oxidative stress in colon is a major intermediate factor that can promote the progression of UC. In the present study, we investigated the effect and the underlying mechanisms of 4-Octyl itaconate (OI) on dextran sulfate sodium (DSS)-induced UC in mice. Our work identified that OI alleviated the colitis by reducing the oxidative stress and the apoptosis in colon tissue, then increasing the tight junction proteins expression and in turn enhancing the intestinal barrier function, thereby creating less severe inflammatory responses. Moreover, our results demonstrated that OI reduced the Kelch-like ECH-associated protein 1 (KEAP1) expression and subsequent upregulated nuclear factor E2-related factor (NRF2) expression and its nuclear translocation which in turn induced the expression of glutathione S-transferase (GST) and NAD(P)H: quinone oxidoreductase 1 (NQO1). In addition, ML385, a NRF2 antagonist, can inhibit the protective effects of OI on UC, indicating that the role of OI in this colitis model could be dependent on the activation of KEAP1-NRF2 pathway. Notably, OI co-administration significantly enhanced the therapeutic effects of mesalazine or 1400W on UC. Collectively, itaconate may have a great potential for use in the treatment of IBD.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Succinatos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Succinatos/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos
10.
Plant J ; 110(3): 863-880, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167131

RESUMO

Plant Knotted1-like homeobox (KNOX) genes encode homeodomain-containing transcription factors. In rice (Oryza sativa L.), little is known about the downstream target genes of KNOX Class II subfamily proteins. Here we generated chromatin immunoprecipitation (ChIP)-sequencing datasets for HOS59, a member of the rice KNOX Class II subfamily, and characterized the genome-wide binding sites of HOS59. We conducted trait ontology (TO) analysis of 9705 identified downstream target genes, and found that multiple TO terms are related to plant structure morphology and stress traits. ChIP-quantitative PCR (qPCR) was conducted to validate some key target genes. Meanwhile, our IP-MS datasets showed that HOS59 was closely associated with BELL family proteins, some grain size regulators (OsSPL13, OsSPL16, OsSPL18, SLG, etc.), and some epigenetic modification factors such as OsAGO4α and OsAGO4ß, proteins involved in small interfering RNA-mediated gene silencing. Furthermore, we employed CRISPR/Cas9 editing and transgenic approaches to generate hos59 mutants and overexpression lines, respectively. Compared with wild-type plants, the hos59 mutants have longer grains and increased glume cell length, a loose plant architecture, and drooping leaves, while the overexpression lines showed smaller grain size, erect leaves, and lower plant height. The qRT-PCR results showed that mutation of the HOS59 gene led to upregulation of some grain size-related genes such as OsSPL13, OsSPL18, and PGL2. In summary, our results indicate that HOS59 may be a repressor of the downstream target genes, negatively regulating glume cell length, rice grain size, plant architecture, etc. The identified downstream target genes and possible interaction proteins of HOS59 improve our understanding of the KNOX regulatory networks.


Assuntos
Oryza , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Phys Chem Chem Phys ; 25(37): 25214-25228, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37724982

RESUMO

In the present work, a promising binary TiC/Bi2O3 photocatalyst was obtained via a simple hydrothermal route. In the photodegradation experiment of acid orange 7 (AO7) and tetracycline (TC) irradiated by simulated sunlight, the attachment of TiC nanoparticles on the Bi2O3 microrods leads to an obvious improvement in the photocatalytic removal properties of the Bi2O3 microrods. The optimal removal efficiency of AO7 was achieved by the 7.5%TiC/Bi2O3 sample, which results in about 91.5% dye removal within 75 min of reaction. Meanwhile, the 7.5%TiC/Bi2O3 sample also exhibits favorable photodegradation performance for the degradation of TC, leading to about ∼76.9% TC being degraded after 75 min of irradiation. More importantly, the degradation pathways of AO7 and toxicity analysis of the intermediate products were performed based on liquid chromatography-mass spectrometry detection and theoretical simulation. The superior photocatalytic behavior of the TiC/Bi2O3 composite is attributed to the effective separation and migration of photoexcited electrons and holes in the heterojunction, where the TiC nanoparticles act as an acceptor of photoexcited electrons.

12.
Environ Res ; 232: 116322, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321338

RESUMO

Ecological treatment system (ETS) has been recognized as a promising technology for mitigating agricultural non-point pollution, whereas it remains to be seen how nitrogen (N) forms and bacterial communities in ETS sediments respond to different aquatic N conditions. Therefore, a four-month microcosm experiment was conducted to investigate the effects of three aquatic N conditions (2 mg/L NH4+-N, 2 mg/L NO3--N and 1 mg/L NH4+-N + 1 mg/L NO3--N) on sediment N forms and bacterial communities in three ETSs vegetated by Potamogeton malaianus, Vallisneria natans and artificial aquatic plant, respectively. Through analysis of four transferable N fractions, the valence states of N in ion-exchange and weak acid extractable fractions were found to be mainly determined by aquatic N conditions, while significant N accumulation was observed only in strong oxidant extractable and strong alkali extractable fractions. Sediment N profiles were primarily influenced by time and plant types, with N condition having secondary effect, while sediment bacterial community structures experienced a significant shift over time and were slightly influenced by plant types. Sediment functional genes related to N fixation, nitrification, assimilable nitrate reduction, dissimilatory nitrite reduction (DNRA) and denitrification were substantially enriched in month 4, and the bacterial co-occurrence network exhibited less complexity but more stability under NO3- condition compared to others. Furthermore, certain sediment N fractions were found to have strong relationships with specific sediment bacteria, such as nitrifiers, denitrifiers and DNRA bacteria. Our findings highlight the significant influence of aquatic N condition in submerged macrophyte-type ETSs on sediment N forms and bacterial communities.


Assuntos
Ecossistema , Nitrogênio , Bactérias/genética , Nitrificação , Nitritos
13.
Mol Cell Proteomics ; 18(1): 51-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257878

RESUMO

Transmissible gastroenteritis virus (TGEV) is a member of Coronaviridae family. Our previous research showed that TGEV infection could induce mitochondrial dysfunction and upregulate miR-222 level. Therefore, we presumed that miR-222 might be implicated in regulating mitochondrial dysfunction induced by TGEV infection. To verify the hypothesis, the effect of miR-222 on mitochondrial dysfunction was tested and we showed that miR-222 attenuated TGEV-induced mitochondrial dysfunction. To investigate the underlying molecular mechanism of miR-222 in TGEV-induced mitochondrial dysfunction, a quantitative proteomic analysis of PK-15 cells that were transfected with miR-222 mimics and infected with TGEV was performed. In total, 4151 proteins were quantified and 100 differentially expressed proteins were obtained (57 upregulated, 43 downregulated), among which thrombospondin-1 (THBS1) and cluster of differentiation 47 (CD47) were downregulated. THBS1 was identified as the target of miR-222. Knockdown of THBS1 and CD47 decreased mitochondrial Ca2+ level and increased mitochondrial membrane potential (MMP) level. Reversely, overexpression of THBS1 and CD47 elevated mitochondrial Ca2+ level and reduced mitochondrial membrane potential (MMP) level. Together, our data establish a significant role of miR-222 in regulating mitochondrial dysfunction in response to TGEV infection.


Assuntos
Antígeno CD47/metabolismo , Gastroenterite Suína Transmissível/metabolismo , MicroRNAs/genética , Mitocôndrias/metabolismo , Trombospondina 1/metabolismo , Vírus da Gastroenterite Transmissível/patogenicidade , Animais , Antígeno CD47/genética , Cálcio/metabolismo , Linhagem Celular , Gastroenterite Suína Transmissível/genética , Regulação da Expressão Gênica , Potencial da Membrana Mitocondrial , Mapas de Interação de Proteínas , Proteômica/métodos , Suínos , Trombospondina 1/genética , Transfecção
14.
Mol Cell Proteomics ; 17(2): 190-204, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217619

RESUMO

Transmissible gastroenteritis virus (TGEV), a member of the coronaviridae family, could cause fatal diarrhea of piglets and result in numerous economic losses. Previous studies demonstrated that TGEV infection could lead to mitochondrial damage and upregulate miR-4331 level. So miR-4331 may play an important regulatory role in the control of mitochondrial function. To explore the potential role of miR-4331 in mitochondrial damage, we adopted a strategy consisting of quantitative proteomic analysis of porcine kidney (PK-15) cells in response to miR-4331 and TGEV infection. Eventually, 69 differentially expressed proteins were gained. The target of miR-4331 was identified. The effects of miR-4331 and its target RB1 on mitochondrial Ca2+ level, mitochondrial membrane potential (MMP), interleukin-1 receptor accessory protein (IL1RAP), p38 MAPK signaling pathway were investigated. The results showed that miR-4331 elevated mitochondrial Ca2+ level, reduced MMP, targets Retinoblastoma 1 (RB1), upregulated IL1RAP, and induced activation of p38 MAPK pathway during TGEV infection. RB1 was identified as the direct targets of miR-4331 and downregulated IL1RAP, suppressed the activation of p38 MPAK, and attenuated TGEV-induced mitochondrial damage. In addition, IL1RAP played a positive role in activating p38 MAPK signaling and negative role in TGEV-induced mitochondrial damage. The data indicate that miR-4331 aggravates TGEV-induced mitochondrial damage by repressing expression of RB1, promoting IL1RAP, and activating p38 MAPK pathway.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/metabolismo , MicroRNAs , Mitocôndrias/fisiologia , Proteína do Retinoblastoma/metabolismo , Vírus da Gastroenterite Transmissível , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Proteína Acessória do Receptor de Interleucina-1/genética , Potencial da Membrana Mitocondrial , Proteômica , Proteína do Retinoblastoma/genética , Suínos
15.
BMC Genomics ; 20(1): 806, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684870

RESUMO

BACKGROUND: Transmissible gastroenteritis virus (TGEV) infection can cause acute inflammation. Long noncoding RNAs (lncRNAs) play important roles in a number of biological process including inflammation response. However, whether lncRNAs participate in TGEV-induced inflammation in porcine intestinal epithelial cells (IPECs) is largely unknown. RESULTS: In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of lncRNAs in Mock and TGEV-infected porcine intestinal epithelial cell-jejunum 2 (IPEC-J2) cell line. A total of 106 lncRNAs were differentially expressed. Many differentially expressed lncRNAs act as elements to competitively attach microRNAs (miRNAs) which target to messenger RNA (mRNAs) to mediate expression of genes that related to toll-like receptors (TLRs), NOD-like receptors (NLRs), tumor necrosis factor (TNF), and RIG-I-like receptors (RLRs) pathways. Functional analysis of the binding proteins and the up/down-stream genes of the differentially expressed lncRNAs revealed that lncRNAs were principally related to inflammatory response. Meanwhile, we found that the differentially expressed lncRNA TCONS_00058367 might lead to a reduction of phosphorylation of transcription factor p65 (p-p65) in TGEV-infected IPEC-J2 cells by negatively regulating its antisense gene promyelocytic leukemia (PML). CONCLUSIONS: The data showed that differentially expressed lncRNAs might be involved in inflammatory response induced by TGEV through acting as miRNA sponges, regulating their up/down-stream genes, or directly binding proteins.


Assuntos
Gastroenterite Suína Transmissível/genética , RNA Longo não Codificante/genética , Vírus da Gastroenterite Transmissível/fisiologia , Animais , Sequência de Bases , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Inflamação/genética , MicroRNAs/genética , Suínos
16.
Mol Biol Evol ; 35(1): 16-26, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029269

RESUMO

Cucurbitaceae plants are of considerable biological and economic importance, and genomes of cucumber, watermelon, and melon have been sequenced. However, a comparative genomics exploration of their genome structures and evolution has not been available. Here, we aimed at performing a hierarchical inference of genomic homology resulted from recursive paleopolyploidizations. Unexpectedly, we found that, shortly after a core-eudicot-common hexaploidy, a cucurbit-common tetraploidization (CCT) occurred, overlooked by previous reports. Moreover, we characterized gene loss (and retention) after these respective events, which were significantly unbalanced between inferred subgenomes, and between plants after their split. The inference of a dominant subgenome and a sensitive one suggested an allotetraploid nature of the CCT. Besides, we found divergent evolutionary rates among cucurbits, and after doing rate correction, we dated the CCT to be 90-102 Ma, likely common to all Cucurbitaceae plants, showing its important role in the establishment of the plant family.


Assuntos
Cucurbitaceae/genética , Análise de Sequência de DNA/métodos , Sequência de Bases/genética , Mapeamento Cromossômico/métodos , Evolução Molecular , Variação Genética/genética , Genoma de Planta/genética , Genômica/métodos , Taxa de Mutação , Filogenia , Poliploidia , Tetraploidia
17.
Eur J Nutr ; 58(2): 905, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30666402

RESUMO

In the original publication of the article error has occurred in Fig. 1b.

18.
J Sci Food Agric ; 99(6): 3186-3191, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30548606

RESUMO

BACKGROUND: This study was to investigate the significant effects of extrusion process variables on chemical properties of extruded white ginseng root hair. The extrusion conditions were set as follows: barrel temperature (110 and 140 °C), moisture content (20 and 30%) and screw speed (200 and 300 rpm). The powder of white ginseng root hair was extruded as L8 (27 ) orthogonal experimental design. RESULTS: The crude saponin and acidic polysaccharide contents of extrudate were significantly higher than those of raw material after extrusion. In addition, antioxidant properties were also increased, while reducing sugar content was markedly lower than that of raw material. Moisture content was the most significant factor affecting the reducing sugar, acidic polysaccharide and total phenolic contents, and 2,2-diphenyl-1-picrylhydrazyl scavenging activity. Barrel temperature significantly affected reducing power, and screw speed significantly influenced crude saponin content. CONCLUSIONS: The extrusion process aided in improving the amount of beneficial compounds from white ginseng root hair. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Antioxidantes/isolamento & purificação , Manipulação de Alimentos/métodos , Panax/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Fenóis/química , Fenóis/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Temperatura
19.
BMC Genomics ; 19(1): 747, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30314467

RESUMO

BACKGROUND: Transmissible gastroenteritis virus (TGEV) infection can activate NF-κB pathway in porcine intestinal epithelial cells and result in severe inflammation. Non-coding RNAs (ncRNAs) are not translated into proteins and play an important role in many biological and pathological processes such as inflammation, viral infection, and mitochondrial damage. However, whether ncRNAs participate in TGEV-induced inflammation in porcine intestinal epithelial cells is largely unknown. RESULTS: In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of mRNAs, miRNAs, and circRNAs in Mock- and TGEV-infected intestinal porcine epithelial cell-jejunum 2 (IPEC-J2) cell line. A total of 523 mRNAs, 65 microRNAs (miRNAs), and 123 circular RNAs (circRNAs) were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed differentially expressed mRNAs were linked to inflammation-related pathways, including NF-κB, Toll-like receptor, NOD-like receptor, Jak-STAT, TNF, and RIG-I-like receptor pathways. The interactions among mRNA, miRNA, and circRNA were analyzed. The data showed that ssc_circ_009380 and miR-22 might have interaction relationship. Dual-luciferase reporter assay confirmed that miR-22 directly bound to ssc_circ_009380. We also observed that overexpression of miR-22 led to a reduction of p-IκB-α and accumulation of p65 in nucleus in TGEV-infected IPEC-J2 cells. In contrast, inhibition of miR-22 had the opposite effects. Moreover, silencing of ssc_circ_009380 inhibited accumulation of p65 in nucleus and phosphorylation of IκB-α. CONCLUSIONS: The data revealed that differentially expressed mRNAs and ncRNAs were primarily enriched in inflammation-related pathways and ssc_circ_009380 promoted activation of NF-κB pathway by binding miR-22 during TGEV-induced inflammation.


Assuntos
Perfilação da Expressão Gênica , Mucosa Intestinal/citologia , NF-kappa B/metabolismo , RNA não Traduzido/genética , Vírus da Gastroenterite Transmissível/fisiologia , Animais , Sequência de Bases , Linhagem Celular , Redes Reguladoras de Genes , Inflamação/genética , Inflamação/virologia , RNA Mensageiro/genética , Análise de Sequência de RNA , Suínos
20.
Plant Physiol ; 174(1): 284-300, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28325848

RESUMO

Mainly due to their economic importance, genomes of 10 legumes, including soybean (Glycine max), wild peanut (Arachis duranensis and Arachis ipaensis), and barrel medic (Medicago truncatula), have been sequenced. However, a family-level comparative genomics analysis has been unavailable. With grape (Vitis vinifera) and selected legume genomes as outgroups, we managed to perform a hierarchical and event-related alignment of these genomes and deconvoluted layers of homologous regions produced by ancestral polyploidizations or speciations. Consequently, we illustrated genomic fractionation characterized by widespread gene losses after the polyploidizations. Notably, high similarity in gene retention between recently duplicated chromosomes in soybean supported the likely autopolyploidy nature of its tetraploid ancestor. Moreover, although most gene losses were nearly random, largely but not fully described by geometric distribution, we showed that polyploidization contributed divergently to the copy number variation of important gene families. Besides, we showed significantly divergent evolutionary levels among legumes and, by performing synonymous nucleotide substitutions at synonymous sites correction, redated major evolutionary events during their expansion. This effort laid a solid foundation for further genomics exploration in the legume research community and beyond. We describe only a tiny fraction of legume comparative genomics analysis that we performed; more information was stored in the newly constructed Legume Comparative Genomics Research Platform (www.legumegrp.org).


Assuntos
Fabaceae/genética , Genoma de Planta/genética , Genômica/métodos , Filogenia , Mapeamento Cromossômico , Evolução Molecular , Fabaceae/classificação , Duplicação Gênica , Genes de Plantas/genética , Modelos Genéticos , Poliploidia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA