Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 616
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2305567120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527348

RESUMO

When a water drop is placed on a hot solid surface, it either undergoes explosive contact boiling or exhibits a stable state. In the latter case, the drop floats over an insulating layer of vapor generated by rapid vaporization of water at the surface/drop interface; this is known as the Leidenfrost state. Here, we discuss a previously unrecognized steady state in which a water drop "stands" on a hot smooth surface. In this state, the drop stabilizes itself with partial adhesion on the hot surface, leading to unique deformation and rotation behavior reminiscent of Sufi whirling-a form of spinning dance. Our analysis of this standing Leidenfrost state reveals the underlying mechanisms that drive the drop's stable partial adhesion and subsequent deformation with rotation. The heat-transfer efficiency of this standing state is up to 390% greater than that of the traditional floating Leidenfrost state.

2.
Acc Chem Res ; 57(6): 895-904, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38427852

RESUMO

ConspectusHydrogen spillover, as a well-known phenomenon for thermal hydrogenation, generally involves the migration of active hydrogen on the surface of metal-supported catalysts. For thermocatalytic hydrogenation, hydrogen spillover generally takes place from metals with superiority for dissociating hydrogen molecules to supports with strong hydrogen adsorption under a H2 environment with high pressures. The former can bring high hydrogen chemical potential to largely reduce the kinetic barrier of the migration of active hydrogen species from metals to supports. At the same time, the latter can make H* migration thermodynamically spontaneous. For these reasons, hydrogen spillover is a common interfacial phenomenon occurring on metal-supported catalysts during thermocatalysis. Recently, this phenomenon has been observed for the exceptionally enhanced electrocatalytic performance for hydrogen evolution and other electrocatalytic organic synthesis. Different from hydrogen spillover for thermocatalysis under high H2 pressure, hydrogen spillover for electrocatalysis involves the migration of active hydrogen species (H*) from metals with strong hydrogen adsorption to supports with weak hydrogen adsorption, thereby suffering from a thermodynamically unfavorable process accompanied by a high kinetic barrier. Thus, the occurrence of hydrogen spillover at the electrocatalytic interface is not easy, and successful cases are rare. Understanding the underlying nature of hydrogen spillover at the electrocatalytic interface of metal-supported catalysts is critical to the rational design of advanced electrocatalysts.In this Account, we provide in-depth insights into recent advances in hydrogen spillover at the electrocatalytic interface for a significantly enhanced hydrogen evolution performance. Electron accumulation at the metal-support interface induces severe interfacial H* trapping and is recognized as the main factor in the failed hydrogen spillover. Given this, we developed two novel strategies to promote the occurrence of hydrogen spillover at the electrocatalytic interface. These strategies include (i) the introduction of ligand environments to enrich the local hydrogen coverage on metals and lower the barrier for interfacial hydrogen spillover and (ii) the minimization of work function difference between metals and supports (ΔΦ) to relieve electron accumulation and lower the kinetic barrier for hydrogen spillover. Also, we summarize the previously reported strategy of shortening the metal-support interface distance to lower the kinetic barrier for interfacial hydrogen spillover. Afterward, some criteria and methodologies are proposed to identify the hydrogen spillover phenomenon at the electrocatalytic interface. Finally, the remaining challenges and future perspectives are also discussed. Based on this Account, we aim to provide new insights into electrocatalysis, particularly the targeted control of hydrogen spillover at the electrocatalytic interface, and then to offer guidelines for the rational design of advanced electrocatalysts.

3.
Nano Lett ; 24(19): 5690-5698, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700237

RESUMO

Long-term tumor starvation may be a potential strategy to elevate the antitumor immune response by depriving nutrients. However, combining long-term starvation therapy with immunotherapy often yields limited efficacy due to the blockage of immune cell migration pathways. Herein, an intelligent blood flow regulator (BFR) is first established through photoactivated in situ formation of the extravascular dynamic hydrogel to compress blood vessels, which can induce long-term tumor starvation to elicit metabolic stress in tumor cells without affecting immune cell migration pathways. By leveraging methacrylate-modified nanophotosensitizers (HMMAN) and biodegradable gelatin methacrylate (GelMA), the developed extravascular hydrogel dynamically regulates blood flow via enzymatic degradation. Additionally, aPD-L1 loaded into HMMAN continuously blocks immune checkpoints. Systematic in vivo experiments demonstrate that the combination of immune checkpoint blockade (ICB) and BFR-induced metabolic stress (BIMS) significantly delays the progression of Lewis lung and breast cancers by reshaping the tumor immunogenic landscape and enhancing antitumor immune responses.


Assuntos
Hidrogéis , Hidrogéis/química , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Feminino , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Imunoterapia , Gelatina/química , Metacrilatos/química , Metacrilatos/farmacologia , Neoplasias da Mama/imunologia
4.
BMC Genomics ; 25(1): 566, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840049

RESUMO

BACKGROUND: Advances of spatial transcriptomics technologies enabled simultaneously profiling gene expression and spatial locations of cells from the same tissue. Computational tools and approaches for integration of transcriptomics data and spatial context information are urgently needed to comprehensively explore the underlying structure patterns. In this manuscript, we propose HyperGCN for the integrative analysis of gene expression and spatial information profiled from the same tissue. HyperGCN enables data visualization and clustering, and facilitates downstream analysis, including domain segmentation, the characterization of marker genes for the specific domain structure and GO enrichment analysis. RESULTS: Extensive experiments are implemented on four real datasets from different tissues (including human dorsolateral prefrontal cortex, human positive breast tumors, mouse brain, mouse olfactory bulb tissue and Zabrafish melanoma) and technologies (including 10X visium, osmFISH, seqFISH+, 10X Xenium and Stereo-seq) with different spatial resolutions. The results show that HyperGCN achieves superior clustering performance and produces good domain segmentation effects while identifies biologically meaningful spatial expression patterns. This study provides a flexible framework to analyze spatial transcriptomics data with high geometric complexity. CONCLUSIONS: HyperGCN is an unsupervised method based on hypergraph induced graph convolutional network, where it assumes that there existed disjoint tissues with high geometric complexity, and models the semantic relationship of cells through hypergraph, which better tackles the high-order interactions of cells and levels of noise in spatial transcriptomics data.


Assuntos
Perfilação da Expressão Gênica , Humanos , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Aprendizado Profundo , Análise por Conglomerados , Biologia Computacional/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Bulbo Olfatório/metabolismo
5.
J Am Chem Soc ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943624

RESUMO

Ascorbic acid (AA) has been attracting great attention with its emerging potential in T cell-dependent antitumor immunity. However, premature blood clearance and immunologically "cold" tumors severely compromise its immunotherapeutic outcomes. As such, the reversal of the immunosuppressive tumor microenvironment (TME) has been the premise for improving the effectiveness of AA-based immunotherapy, which hinges upon advanced AA delivery and amplified immune-activating strategies. Herein, a novel Escherichia coli (E. coli) outer membrane vesicle (OMV)-red blood cell (RBC) hybrid membrane (ERm)-camouflaged immunomodulatory nanoturret is meticulously designed based on gating of an AA-immobilized metal-organic framework (MOF) onto bortezomib (BTZ)-loaded magnesium-doped mesoporous silica (MMS) nanovehicles, which can realize immune landscape remodeling by chemotherapy-assisted ascorbate-mediated immunotherapy (CAMIT). Once reaching the acidic TME, the acidity-sensitive MOF gatekeeper and MMS core within the nanoturret undergo stepwise degradation, allowing for tumor-selective sequential release of AA and BTZ. The released BTZ can evoke robust immunogenic cell death (ICD), synergistically promote dendritic cell (DC) maturation in combination with OMV, and ultimately increase T cell tumor infiltration together with Mg2+. The army of T cells is further activated by AA, exhibiting remarkable antitumor and antimetastasis performance. Moreover, the CD8-deficient mice model discloses the T cell-dependent immune mechanism of the AA-based CAMIT strategy. In addition to providing a multifunctional biomimetic hybrid nanovehicle, this study is also anticipated to establish a new immunomodulatory fortification strategy based on the multicomponent-driven nanoturret for highly efficient T cell-activation-enhanced synergistic AA immunotherapy.

6.
Neurobiol Dis ; 192: 106426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331353

RESUMO

The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.


Assuntos
Sistema Glinfático , Doenças Neurodegenerativas , Humanos , Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Aquaporina 4 , Inflamação/metabolismo
7.
Cancer Sci ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475962

RESUMO

The relationship between drug-induced liver injury and liver metastasis of colorectal cancer and the underlying mechanisms are not well understood. In this study, we used carbon tetrachloride to construct a classic mouse liver injury model and injected CT26 colorectal cancer cells into the mouse spleen to simulate the natural route of colorectal cancer liver metastasis. Liver injury significantly increased the number of colorectal cancer liver metastases. Transcriptome sequencing and data-independent acquisition protein quantification identified proteins that were significantly differentially expressed in injured livers, and orosomucoid (ORM) 2 was identified as a target protein for tumor liver metastasis. In vitro experiments showed that exogenous ORM2 protein increased the expression of EMT markers such as Twist, Zeb1, Vim, Snail1 and Snail2 and chemokine ligands to promote CT26 cell migration. In addition, liver-specific overexpression of the ORM2 protein in the mouse model significantly promoted tumor cell liver metastasis without inducing liver injury. Our results indicate that drug-induced liver injury can promote colorectal cancer liver metastasis and that ORM2 can promote cell migration by inducing EMT in tumor cells.

8.
Development ; 148(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33323370

RESUMO

The control of size and shape is an important part of regulatory process during organogenesis. Tooth formation is a highly complex process that fine-tunes the size and shape of the tooth, which are crucial for its physiological functions. Each tooth consists of a crown and one or more roots. Despite comprehensive knowledge of the mechanism that regulates early tooth crown development, we have limited understanding of the mechanism regulating root patterning and size during development. Here, we show that Ror2-mediated non-canonical Wnt signaling in the dental mesenchyme plays a crucial role in cell proliferation, and thereby regulates root development size in mouse molars. Furthermore, Cdc42 acts as a potential downstream mediator of Ror2 signaling in root formation. Importantly, activation of Cdc42 can restore cell proliferation and partially rescue the root development size defects in Ror2 mutant mice. Collectively, our findings provide novel insights into the function of Ror2-mediated non-canonical Wnt signaling in regulating tooth morphogenesis, and suggest potential avenues for dental tissue engineering.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Raiz Dentária/embriologia , Raiz Dentária/metabolismo , Via de Sinalização Wnt , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Masculino , Mesoderma/embriologia , Camundongos , Camundongos Mutantes , Morfogênese , Odontoblastos/citologia , Odontoblastos/metabolismo , Raiz Dentária/citologia
9.
J Neuroinflammation ; 21(1): 153, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849869

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder with indistinct etiology and ill-defined pathophysiology. Intestinal inflammation involved in the pathogenesis of PD, but the underlying mechanism is not fully understood. Citrobacter rodentium (C.R) is a gram-negative bacterium that can be used to induce human inflammatory bowel disease in mice. Here, we investigated whether the proinflammatory effects caused by C.R infection initiate PD-like injury and/or exacerbate PD pathology and extensively studied the underlying mechanism. Mice were gavaged once with C.R and monitored for several pathological features at 9 days post infection. The results showed that C.R delivery in mice induced IBD-like symptoms, including significant weight loss, increased fecal water content, an impaired intestinal barrier, intestinal hyperpermeability and inflammation, and intestinal microbiota disturbances. Notably, C.R infection modified dopamine (DA) metabolism in the brains of both male and female mice. Subsequently, a single high dose of MPTP or normal saline was administered at 6 days post infection. At 3 days after MPTP administration, the feces were collected for 16 S rRNA analysis, and PD-like phenotypes and mechanisms were systemically analyzed. Compared with C.R or MPTP injection alone, the injection of C.R and MPTP combined worsened behavioral performance. Moreover, such combination triggered more severe dopaminergic degeneration and glial cell overactivation in the nigrostriatal pathway of mice. Mechanistically, the combination of C.R and MPTP increased the expression of TLR4 and NF-κB p65 in the colon and striatum and upregulated proinflammatory cytokine expression. Therefore, C.R infection-induced intestinal inflammation can impair dopamine metabolism and exacerbate PD pathological processes.


Assuntos
Citrobacter rodentium , Dopamina , Infecções por Enterobacteriaceae , Camundongos Endogâmicos C57BL , Animais , Camundongos , Dopamina/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/patologia , Masculino , Feminino , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/microbiologia , Microbioma Gastrointestinal/fisiologia
10.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35380624

RESUMO

The single-cell multiomics technologies provide an unprecedented opportunity to study the cellular heterogeneity from different layers of transcriptional regulation. However, the datasets generated from these technologies tend to have high levels of noise, making data analysis challenging. Here, we propose jointly semi-orthogonal nonnegative matrix factorization (JSNMF), which is a versatile toolkit for the integrative analysis of transcriptomic and epigenomic data profiled from the same cell. JSNMF enables data visualization and clustering of the cells and also facilitates downstream analysis, including the characterization of markers and functional pathway enrichment analysis. The core of JSNMF is an unsupervised method based on JSNMF, where it assumes different latent variables for the two molecular modalities, and integrates the information of transcriptomic and epigenomic data with consensus graph fusion, which better tackles the distinct characteristics and levels of noise across different molecular modalities in single-cell multiomics data. We applied JSNMF to single-cell multiomics datasets from different tissues and different technologies. The results demonstrate the superior performance of JSNMF in clustering and data visualization of the cells. JSNMF also allows joint analysis of multiple single-cell multiomics experiments and single-cell multiomics data with more than two modalities profiled on the same cell. JSNMF also provides rich biological insight on the markers, cell-type-specific region-gene associations and the functions of the identified cell subpopulation.


Assuntos
Genômica , Análise de Célula Única , Algoritmos , Análise por Conglomerados , Genômica/métodos , Análise de Célula Única/métodos , Transcriptoma
11.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383176

RESUMO

MOTIVATION: Technological advances have enabled us to profile single-cell multi-omics data from the same cells, providing us with an unprecedented opportunity to understand the cellular phenotype and links to its genotype. The available protocols and multi-omics datasets [including parallel single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) data profiled from the same cell] are growing increasingly. However, such data are highly sparse and tend to have high level of noise, making data analysis challenging. The methods that integrate the multi-omics data can potentially improve the capacity of revealing the cellular heterogeneity. RESULTS: We propose an adaptively weighted multi-view learning (scAWMV) method for the integrative analysis of parallel scRNA-seq and scATAC-seq data profiled from the same cell. scAWMV considers both the difference in importance across different modalities in multi-omics data and the biological connection of the features in the scRNA-seq and scATAC-seq data. It generates biologically meaningful low-dimensional representations for the transcriptomic and epigenomic profiles via unsupervised learning. Application to four real datasets demonstrates that our framework scAWMV is an efficient method to dissect cellular heterogeneity for single-cell multi-omics data. AVAILABILITY AND IMPLEMENTATION: The software and datasets are available at https://github.com/pengchengzeng/scAWMV. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Análise da Expressão Gênica de Célula Única , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Software , Transcriptoma , Análise de Sequência de RNA
12.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216923

RESUMO

MOTIVATION: The accumulation of multi-omics microbiome data provides an unprecedented opportunity to understand the diversity of bacterial, fungal, and viral components from different conditions. The changes in the composition of viruses, bacteria, and fungi communities have been associated with environments and critical illness. However, identifying and dissecting the heterogeneity of microbial samples and cross-kingdom interactions remains challenging. RESULTS: We propose HONMF for the integrative analysis of multi-modal microbiome data, including bacterial, fungal, and viral composition profiles. HONMF enables identification of microbial samples and data visualization, and also facilitates downstream analysis, including feature selection and cross-kingdom association analysis between species. HONMF is an unsupervised method based on hypergraph induced orthogonal non-negative matrix factorization, where it assumes that latent variables are specific for each composition profile and integrates the distinct sets of latent variables through graph fusion strategy, which better tackles the distinct characteristics in bacterial, fungal, and viral microbiome. We implemented HONMF on several multi-omics microbiome datasets from different environments and tissues. The experimental results demonstrate the superior performance of HONMF in data visualization and clustering. HONMF also provides rich biological insights by implementing discriminative microbial feature selection and bacterium-fungus-virus association analysis, which improves our understanding of ecological interactions and microbial pathogenesis. AVAILABILITY AND IMPLEMENTATION: The software and datasets are available at https://github.com/chonghua-1983/HONMF.


Assuntos
Microbiota , Multiômica , Software , Algoritmos , Análise por Conglomerados
13.
Mass Spectrom Rev ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37565588

RESUMO

The molecular composition of exhaled human breath can reflect various physiological and pathological conditions. Considerable progress has been achieved over the past decade in real-time analysis of exhaled human breath using direct mass spectrometry methods, including selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, extractive electrospray ionization mass spectrometry, secondary electrospray ionization mass spectrometry, acetone-assisted negative photoionization mass spectrometry, atmospheric pressure photoionization mass spectrometry, and low-pressure photoionization mass spectrometry. Here, recent developments in direct mass spectrometry analysis of exhaled human breath are reviewed with regard to analytical performance (chemical sensitivity, selectivity, quantitative capabilities) and applications of the developed methods in disease diagnosis, targeted molecular detection, and real-time metabolic monitoring.

14.
Chemistry ; : e202401257, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709195

RESUMO

Aqueous proton batteries have received increasing attention due to their outstanding rate performance, stability and high capacity. However, the selection of anode materials in strongly acidic electrolytes poses a challenge in achieving high-performance aqueous proton batteries. This study optimized the proton reaction kinetics of layered metal oxide WO3 by introducing interlayer structural water and coating polyaniline (PANI) on its surface to prepare organic-inorganic hybrid material (WO3 ⋅ 2H2O@PANI). We constructed an aqueous proton battery with WO3 ⋅ 2H2O@PANI anode and MnO2@GF cathode. After 1500 cycles at a current density of 10 A g-1, the capacity retention rate can still reach 80.2 %. These results can inspire the development of new aqueous proton batteries.

15.
Chemistry ; 30(17): e202303779, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38095235

RESUMO

Oxygen evolution reaction (OER) is the key anode reaction of electrolytic water. To improve the slow OER kinetics, we synthesize nanoflower-like Co-Fe-Cr-Mo-Mn high-entropy spinel (HES) nanosheets on nickel foam (NF) by one-step solvothermal method, which exhibit an overpotential (η10) of only 188 mV at 10 mA cm-2, much lower than bimetallic CoFeOx/NF (233 mV), trimetallic CoFeCrOx/NF (211 mV), and tetrametallic CoFeCrMoOx/NF (200 mV). The OER overpotential decreases with the increase of the number of metals, indicating that the formation of HES has a positive effect on the improvement of electrocatalytic performance, since the synergistic effect between different metals enhances the charge transfer rate and decreases reaction barrier. In-situ Raman spectra demonstrate that the formation of γ-NiOOH on the HES surface is a crucial active species for the OER. This work demonstrates a simple and efficient synthesis method to prepare nanoflower-like high-entropy electrocatalysts for efficient OER electrocatalysis.

16.
Brain Behav Immun ; 119: 129-145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552923

RESUMO

GSDMD-mediated pyroptosis occurs in the nigrostriatal pathway in Parkinson's disease animals, yet the role of GSDMD in neuroinflammation and death of dopaminergic neurons in Parkinson's disease remains elusive. Here, our in vivo and in vitro studies demonstrated that GSDMD, as a pyroptosis executor, contributed to glial reaction and death of dopaminergic neurons across different Parkinson's disease models. The ablation of the Gsdmd attenuated Parkinson's disease damage by reducing dopaminergic neuronal death, microglial activation, and detrimental transformation. Disulfiram, an inhibitor blocking GSDMD pore formation, efficiently curtailed pyroptosis, thereby lessening the pathology of Parkinson's disease. Additionally, a modification in GSDMD was identified in the blood of Parkinson's disease patients in contrast to healthy subjects. Therefore, the detected alteration in GSDMD within the blood of Parkinson's disease patients and the protective impact of disulfiram could be promising for the diagnostic and therapeutic approaches against Parkinson's disease.


Assuntos
Dissulfiram , Neurônios Dopaminérgicos , Microglia , Doença de Parkinson , Proteínas de Ligação a Fosfato , Piroptose , Piroptose/efeitos dos fármacos , Piroptose/fisiologia , Doença de Parkinson/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Masculino , Humanos , Proteínas de Ligação a Fosfato/metabolismo , Dissulfiram/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Morte Celular/efeitos dos fármacos , Camundongos Knockout , Gasderminas
17.
Anticancer Drugs ; 35(5): 385-396, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38386130

RESUMO

It is well known that immune cells including macrophages within the tumor microenvironment play an essential role in tumor progression. Here, we studied how NFATc2 regulated macrophage properties in lung adenocarcinoma. Higher expression of NFATc2 was observed in the lung adenocarcinoma tissues than in the normal lung tissues. Positive relationships were found between NFATc2 and genes associated with hypoxia and glycolysis in lung adenocarcinoma from the TCGA dataset. According to single-cell sequence data, NFATc2 was closely associated with infiltrating immune cells and was related to macrophage polarization. As a transcription factor, NFATc2 binding to the USP17 promoter region, that enhanced cell migration and lactate level in lung adenocarcinoma cells, and M2 polarization in macrophages. Furthermore, the NFATc2 inhibitor suppressed lactate and M2 macrophage polarization induced by NFATc2 and USP17. In conclusion, NFATc2 promotes lactate level and M2 macrophage polarization by transcriptionally regulating USP17 in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Ácido Láctico/metabolismo , Adenocarcinoma de Pulmão/patologia , Macrófagos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias Pulmonares/patologia , Microambiente Tumoral , Linhagem Celular Tumoral
18.
Inflamm Res ; 73(4): 641-654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411634

RESUMO

BACKGROUND: Neuroinflammation is crucial in the development of postoperative cognitive dysfunction (POCD), and microglial activation is an active participant in this process. SS-31, a mitochondrion-targeted antioxidant, is widely regarded as a potential drug for neurodegenerative diseases and inflammatory diseases. In this study, we sought to explore whether SS-31 plays a neuroprotective role and the underlying mechanism. METHODS: Internal fixation of tibial fracture was performed in 18-month-old mice to induce surgery-associated neurocognitive dysfunction. LPS was administrated to BV2 cells to induce neuroinflammation. Neurobehavioral deficits, hippocampal injury, protein expression, mitophagy level and cell state were evaluated after treatment with SS-31, PHB2 siRNA and an STING agonist. RESULTS: Our study revealed that SS-31 interacted with PHB2 to activate mitophagy and improve neural damage in surgically aged mice, which was attributed to the reduced cGAS-STING pathway and M1 microglial polarization by decreased release of mitochondrial DNA (mtDNA) but not nuclear DNA (nDNA). In vitro, knockdown of PHB2 and an STING agonist abolished the protective effect of SS-31. CONCLUSIONS: SS-31 conferred neuroprotection against POCD by promoting PHB2-mediated mitophagy activation to inhibit mtDNA release, which in turn suppressed the cGAS-STING pathway and M1 microglial polarization.


Assuntos
DNA Mitocondrial , Mitofagia , Complicações Cognitivas Pós-Operatórias , Animais , Humanos , Lactente , Camundongos , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , Mitocôndrias , Mitofagia/efeitos dos fármacos , Doenças Neuroinflamatórias , Nucleotidiltransferases/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Complicações Cognitivas Pós-Operatórias/tratamento farmacológico , Complicações Cognitivas Pós-Operatórias/metabolismo , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo
19.
Inorg Chem ; 63(1): 842-851, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38100035

RESUMO

Rapid and sensitive electrochemical determination of trace carcinogenic Cr(VI) pollutants remains an urgent and important task, which requires the development of active sensing materials. Herein, four cases of reduced phosphomolybdates with formulas of the (H2bib)3[Zn(H2PO4)]2{Mn[P4Mo6O31H7]2}·6H2O (1), (H2bib)2[Na(H2O)]2[Mn(H2O)]2{Mn[P4Mo6O31H6]2}·5H2O (2), (H2bib)3[Mo2(µ2-O)2(H2O)4]2{Ni[P4Mo6O31H2]2}·4H2O (3), and (H2bib)2{Ni[P4Mo6O31H9]2}·9H2O (4) (bib = 4,4'-bis(1-imidazolyl)-biphenyl) were hydrothermally synthesized under the guidance of a bridging component strategy, which function as effective electrochemical sensors to detect trace Cr(VI). The difference of hybrids 1-4 is in the inorganic moiety, in which the reduced phosphomolybdates {M[P4MoV6O31]2} (M{P4Mo6}2) exhibited different arrangements bridged by different cationic components ({Zn(H2PO4)} subunit for 1, [Mn2(H2O)2]4+ dimer for 2, and [MoV2(µ2-O)2(H2O)4]6+ for 3). As a result, hybrids 1 and 3 display noticeable Cr(VI) detection activity with low detection limits of 14.3 nM (1.48 ppb) for 1 and 6.61 nM (0.69 ppb) for 3 and high sensitivities of 97.3 and 95.3 µA·mM-1, respectively, which are much beyond the World Health Organization's detection threshold (0.05 ppm) and superior to those of the contrast samples (inorganic Mn{P4Mo6}2 salt and hybrid 4), even the most reported noble-metal catalysts. This work supplies a prospective pathway to build effective electrochemical sensors based on phosphomolybdates for environmental pollutant treatment.

20.
Drug Resist Updat ; 67: 100917, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36608472

RESUMO

Bacterial biofilm-associated infection is a life-threatening emergency contributing from drug resistance and immune escape. Herein, a novel non-antibiotic strategy based on the synergy of bionanocatalysts-driven heat-amplified chemodynamic therapy (CDT) and innate immunomodulation is proposed for specific biofilm elimination by the smart design of a biofilm microenvironment (BME)-responsive double-layered metal-organic framework (MOF) bionanocatalysts (MACG) composed of MIL-100 and CuBTC. Once reaching the acidic BME, the acidity-triggered degradation of CuBTC allows the sequential release of glucose oxidase (GOx) and an activable photothermal agent, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). GOx converts glucose into H2O2 and gluconic acid, which can further acidify the BME to accelerate the CuBTC degradation and GOx/ABTS release. The in vitro and in vivo results show that horseradish peroxidase (HRP)-mimicking MIL-100 in the presence of self-supplied H2O2 can catalyze the oxidation of ABTS into oxABTS to yield a photothermal effect that breaks the biofilm structure via eDNA damage. Simultaneously, the Cu ion released from the degraded CuBTC can deplete glutathione and catalyze the splitting of H2O2 into •OH, which can effectively penetrate the heat-induced loose biofilms and kill sessile bacteria (up to 98.64%), such as E. coli and MRSA. Particularly, MACG-stimulated M1-macrophage polarization suppresses the biofilm regeneration by secreting pro-inflammatory cytokines (e.g., IL-6, TNF-α, etc.) and forming a continuous pro-inflammatory microenvironment in peri-implant biofilm infection animals for at least 14 days. Such BME-responsive strategy has the promise to precisely eliminate refractory peri-implant biofilm infections with extremely few adverse effects.


Assuntos
Temperatura Alta , Neoplasias , Animais , Escherichia coli , Peróxido de Hidrogênio/farmacologia , Biofilmes , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA