Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(11): 810, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36129570

RESUMO

No studies have been carried out on the benthic harmful algal blooms (BHABs) along the Strait of Gibraltar in the Mediterranean, and little is known about the diversity of blooming species. Here, epibenthic dinoflagellates were monitored at least biweekly over 18 months (May 2019-November 2020) in Oued Lihoud, Cap Malabata and Dalia on the thalli of five dominant macrophytes and in the water column. This is the first report on the seasonal distribution of BHAB species hosted by natural biotic substrates in the Strait of Gibraltar, which is known for high hydrodynamics, major entry of Atlantic waters and important maritime traffic. Three BHAB dinoflagellates were observed in the surveyed areas: Ostreopsis spp., Coolia monotis and Prorocentrum lima. The analysis of all data at the three sites showed that Dictyota dichotoma was the most favourable macroalgae host for these benthic dinoflagellates. The highest cell densities were observed in Cap Malabata for Ostreopsis spp. (2.7 × 105 cells/g fresh weight in September 2020), P. lima (4.57 × 104 cells/g FW in September 2020) and C. monotis (4.07 × 104 cells/g FW in June 2019). Phosphate and temperature were positively correlated to the abundances of the studied thermophilic BHAB species. In contrast, negative correlations were recorded with salinity, ammonium, nitrite, nitrate, DIN, nitrogen/phosphate ratio and suspended material, attesting of the complex relationships between environmental factors and BHAB species dynamic in each marine ecosystem. Toxin analyses of the natural phytoplankton assemblage during BHABs showed the presence of only lipophilic toxins, namely okadaic acid and dinophysistoxins produced by P. lima. These BHABs species have to be isolated to establish monoclonal cultures for ribotyping and ecophysiological investigations.


Assuntos
Compostos de Amônio , Dinoflagellida , Dinoflagellida/fisiologia , Ecossistema , Monitoramento Ambiental , Gibraltar , Nitratos , Nitritos , Nitrogênio , Ácido Okadáico , Fosfatos , Água
2.
Sci Total Environ ; 945: 174094, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906288

RESUMO

The dinoflagellate Gymnodinium catenatum is considered the primary cause of recurrent paralytic shellfish toxins (PSTs) in shellfish on the Moroccan Mediterranean coasts. The impacts of key environmental factors on the growth, cell yield, cell size and PST content of G. catenatum were determined. Results indicated that increasing salinity from 32 to 39 and nitrate concentrations from 441 µM to 1764 µM did not significantly (ANOVA, P-value >0.63) modify the growth rate of the studied species. Gymnodinium catenatum exhibited the highest growth rate at 24 °C. Cells arrested their division at 15 °C and at ammonium concentration above 441 µM, suggesting that this nitrogen form is toxic for G. catenatum. Furthermore, G. catenatum was unable to assimilate urea as a nitrogen source. In G. catenatum cells, eight analogues of saxitoxin were detected, belonging to the N-sulfocarbamoyl (C1-4, B1 and B2) and decarbamoyl (dc-GTX2/3) toxins. C-toxins contributed 92 % to 98 % of the molar composition of the PSTs. During the exponential growth, C2 tended to dominate, while C3 prevailed during the stationary phase. Toxin content per cell (ranging from 5.5 pg STXeq.cell-1 to 22.4 pg STXeq.cell-1) increased during the stationary growth phase. Cell toxin content increased with the concentrations of nitrate, ranging from 12.1 pg STXeq.cell-1 at 441 µM to 22.4 pg STXeq.cell-1 at 1764 µM during the stationary growth phase. The toxin content of G. catenatum showed the highest values measured at the highest tested temperatures, especially during the stationary phase, where toxicity reached 17.8 pg STXeq.cell-1 and 16.4 pg STXeq.cell-1 at 24 °C and 29 °C, respectively. The results can help understand the fluctuations in the growth and PST content of G. catenatum in its habitat in response to changing environmental variables in the Mediterranean Sea when exposed to increases in warming pressure and eutrophication.

3.
Mar Pollut Bull ; 185(Pt B): 114349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36410198

RESUMO

The distribution of the two potentially toxic dinoflagellates Gymnodinium catenatum and Alexandrium spp. was investigated in the Mediterranean Moroccan Sea from March 2018 to March 2019. The cockle Acanthocardia tuberculata and the smooth clam Callista chione were collected at four stations, and their toxin levels were assessed using the mouse bioassay. The toxin profile was analysed by LC-MS/MS in G. catenatum and in the bivalves harvested in M'diq and Djawn. The species G. catenatum was present throughout the year, whereas Alexandrium spp. was less abundant. The paralytic shellfish toxin (PST) level in cockles was, on average, six times above the sanitary threshold; GTX5 was the major contributor to the total PST level, followed by dc-STX and STX. The toxin level of the smooth clam was considerably lower than that of the cockle; GTX5 and C-toxins were the dominating analogues. Our results suggest the responsibility of G. catenatum for the recurrent PST contamination in the Moroccan Mediterranean Sea, with a west-east gradient.


Assuntos
Cardiidae , Dinoflagellida , Toxinas Biológicas , Animais , Camundongos , Cromatografia Líquida , Marrocos , Espectrometria de Massas em Tandem , Moluscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA