Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 37(11): 2149-2157, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607294

RESUMO

ABSTRACT: MacDougall, KB, McClean, ZJ, MacIntosh, BR, Fletcher, JR, and Aboodarda, SJ. Ischemic preconditioning, but not priming exercise, improves exercise performance in trained rock climbers. J Strength Cond Res 37(11): 2149-2157, 2023-To assess the effects of ischemic preconditioning (IPC) and priming exercise on exercise tolerance and performance fatigability in a rock climbing-specific task, 12 rock climbers completed familiarization and baseline tests, and constant-load hangboarding tests (including 7 seconds on and 3 seconds off at an intensity estimated to be sustained for approximately 5 minutes) under 3 conditions: (a) standardized warm-up (CON), (b) IPC, or (c) a priming warm-up (PRIME). Neuromuscular responses were assessed using the interpolated twitch technique, including maximum isometric voluntary contraction (MVC) of the finger flexors and median nerve stimulation, at baseline and after the performance trial. Muscle oxygenation was measured continuously using near-infrared spectroscopy (NIRS) across exercise. Time to task failure (T lim ) for IPC (316.4 ± 83.1 seconds) was significantly greater than CON (263.6 ± 69.2 seconds) ( p = 0.028), whereas there was no difference between CON and PRIME (258.9 ± 101.8 seconds). At task failure, there were no differences in MVC, single twitch force, or voluntary activation across conditions; however, recovery of MVC and single twitch force after the performance trial was delayed for IPC and PRIME compared with CON ( p < 0.05). Despite differences in T lim , there were no differences in any of the NIRS variables assessed. Overall, despite exercise tolerance being improved by an average of 20.0% after IPC, there were no differences in neuromuscular responses at task failure, which is in line with the notion of a critical threshold of peripheral fatigue. These results indicate that IPC may be a promising precompetition strategy for rock climbers, although further research is warranted to elucidate its mechanism of action.


Assuntos
Precondicionamento Isquêmico , Exercício de Aquecimento , Humanos , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Contração Isométrica/fisiologia , Precondicionamento Isquêmico/métodos , Fadiga Muscular/fisiologia
2.
Scand J Med Sci Sports ; 32(6): 951-970, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35253274

RESUMO

The energetics of cycling represents a well-studied area of exercise science, yet there are still many questions that remain. Efficiency, broadly defined as the ratio of energy output to energy input, is one key metric that, despite its importance from both a scientific as well as performance perspective, is commonly misunderstood. There are many factors that may affect cycling efficiency, both intrinsic (e.g., muscle fiber type composition) and extrinsic (e.g., cycling cadence, prior exercise, and training), creating a complex interplay of many components. Due to its relative simplicity, the measurement of oxygen uptake continues to be the most common means of measuring the energy cost of exercise (and thus efficiency); however, it is limited to only a small proportion of the range of outputs humans are capable of, further limiting our understanding of the energetics of high-intensity exercise and any mechanistic bases therein. This review presents evidence that delta efficiency does not represent muscular efficiency and challenges the notion that the slow component of oxygen uptake represents decreasing efficiency. It is noted that gross efficiency increases as intensity of exercise increases in spite of the fact that fast-twitch fibers are recruited to achieve this high power output. Understanding the energetics of high-intensity exercise will require critical evaluation of the available data.


Assuntos
Ciclismo , Consumo de Oxigênio , Ciclismo/fisiologia , Exercício Físico/fisiologia , Teste de Esforço , Humanos , Fibras Musculares Esqueléticas/fisiologia , Oxigênio , Consumo de Oxigênio/fisiologia
3.
J Muscle Res Cell Motil ; 42(1): 59-65, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31916128

RESUMO

Activity dependent potentiation is thought to result from phosphorylation of the regulatory light chains of myosin, increasing Ca2+ sensitivity. Yet, Ca2+ sensitivity decreases early in a period of intermittent contractions. The purpose of this study was to investigate the early change in Ca2+ sensitivity during intermittent submaximal tetanic contractions. Flexor digitorum brevis muscle fibres were dissected from mice after cervical disarticulation. Fibres were superfused with Tyrode solution at 32 °C. Length was set to yield maximal tetanic force. Indo-1 was microinjected into fibres and allowed to dissipate for 30 min. Fluorescence was measured at 405 and 495 nm wavelength and the ratio was used to estimate [Ca2+]. A control force-Ca2+ relationship was determined with stimulation over a range of frequencies, yielding constants for slope, max force, and half-maximal [Ca2+] (pCa2 +50). Data were collected for sequential contractions at 40 Hz at 2 s intervals. Active force decreased over the first 1-4 contractions then increased. A force-pCa2+ curve was fit to each contraction, using the control values for the Hill slope and max force by adjusting pCa2+50 until the curve passed through the target contraction. Data are presented for three contractions for each fibre: first, maximum shift to the right, and last contraction. There was a significant shift to the right for pCa2+50 (decreased Ca2+ sensitivity), usually early in the series of intermittent contractions, then pCa2 +50 shifted to the left, but remained significantly different from the control value. Although potentiation is associated with increased Ca2+ sensitivity, this increase begins only after Ca2+ sensitivity has decreased and, in most cases, Ca2+ sensitivity does not increase above the control level.


Assuntos
Cálcio/metabolismo , Contração Muscular/fisiologia , Animais , Feminino , Camundongos
4.
J Exp Biol ; 224(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34028517

RESUMO

We investigated age-related changes to fascicle length, sarcomere length and serial sarcomere number (SSN), and how this affects passive force. Following mechanical testing to determine passive force, the medial gastrocnemius muscle of young (n=9) and old (n=8) Fisher 344BN hybrid rats was chemically fixed at the optimal muscle length for force production; individual fascicles were dissected for length measurement, and laser diffraction was used to assess sarcomere length. Old rats had ∼14% shorter fascicle lengths than young rats, which was driven by a ∼10% reduction in SSN, with no difference in sarcomere length (∼4%). Passive force was greater in the old than in the young rats at long muscle lengths. Shorter fascicle lengths and reduced SSN in the old rats could not entirely explain increased passive forces for absolute length changes, owing to a slight reduction in sarcomere length in old rats, resulting in similar sarcomere length at long muscle lengths.


Assuntos
Músculo Esquelético , Sarcômeros , Animais , Fenômenos Mecânicos , Contração Muscular , Ratos
5.
Exp Physiol ; 105(11): 1907-1917, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32897614

RESUMO

NEW FINDINGS: What is the central question of this study? The length dependence of activation (LDA) is typically explained by a length-dependent increase in calcium sensitivity, but recently calcium-independent mechanisms have been suggested: does active muscle shortening provided by a compliant in-series component impact the muscle length at which force output is maximized, thus contributing to LDA? What is the main finding and its importance? Using an in situ rat medial gastrocnemius set-up and varying the magnitude of muscle shortening via an artificial compliant series-elastic component, we were unable to observe any change in optimal length between conditions, contrary to some previous findings. More research is therefore required to explain these discrepancies. ABSTRACT: The force-length relationship dictates the amount of force a muscle can produce as a function of its length, during maximal isometric contractions. When activation is submaximal, it has been shown that the length at which force production is highest (the optimal length) is longer. This is typically explained by a length-dependent increase in Ca2+ sensitivity, known as the 'length dependence of activation'. Recent reports have implicated shortening against in-series compliance to be a potential factor in the observed optimal length (L0 ) of muscle, via the phenomenon of shortening-induced force depression (a phenomenon which describes the relative reduction in muscle force when a muscle is actively shortening to a given length compared to contracting isometrically at that same length). In the current study, rat medial gastrocnemius was stimulated with single and triple pulses (200 Hz) over a range of lengths, both with and without additional in-series compliance provided by a small piece of silicon tubing in series with the muscle, which allowed greater fascicle shortening upon activation. Fascicle length was measured using sonomicrometry crystals, and peak force (Fpeak ) and L0 were estimated by curve-fitting of the force-length data. The additional in-series compliance significantly reduced Fpeak by approximately 14% and 25% for the single and triple pulses, respectively (P = 0.003, P < 0.001), yet L0 remained unchanged (P = 0.405), suggesting that in our model, shortening against in-series compliance does not affect L0 . We offer potential explanations for the discrepancies seen and discuss whether the velocity of shortening may have a role in the length dependence of force.


Assuntos
Contração Muscular , Músculo Esquelético , Animais , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Ratos
6.
PLoS Comput Biol ; 15(3): e1006712, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845143

RESUMO

Skeletal muscle contraction is initiated when an action potential triggers the release of Ca2+ into the sarcomere in a process referred to as excitation-contraction coupling. The speed and scale of this process makes direct observation very challenging and invasive. To determine how the concentration of Ca2+ changes within the myofibril during a single activation, several simulation models have been developed. These models follow a common pattern; divide the half sarcomere into a series of compartments, then use ordinary differential equations to solve reactions occurring within and between the compartments. To further develop this type of simulation, we have created a realistic structural model of a skeletal muscle myofibrillar half-sarcomere using MCell software that incorporates the myofilament lattice structure. Using this simulation model, we were successful in reproducing the averaged calcium transient during a single activation consistent with both the experimental and previous simulation results. In addition, our simulation demonstrated that the inclusion of the myofilament lattice within our model produced an asymmetric distribution of Ca2+, with more Ca2+ accumulating near the Z-disk and less Ca2+ reaching the m-line. This asymmetric distribution of Ca2+ is also apparent when we examine how the Ca2+ are bound to the troponin-C proteins along the actin filaments. Our simulation model also allowed us to produce advanced visualizations of this process, including two simulation animations, allowing us to view Ca2+ release, diffusion, binding and uptake within the myofibrillar half-sarcomere.


Assuntos
Cálcio/metabolismo , Modelos Biológicos , Músculo Esquelético/metabolismo , Sarcômeros , Processos Estocásticos , Trifosfato de Adenosina/metabolismo , Animais , Método de Monte Carlo , Troponina C/metabolismo
8.
J Exp Biol ; 222(Pt 9)2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30890621

RESUMO

Although fatigue can be defined as an exercise-related decrease in maximal power or isometric force, most studies have assessed only isometric force. The main purpose of this experiment was to compare dynamic measures of fatigue [maximal torque (Tmax), maximal velocity (Vmax) and maximal power (Pmax)] with measures associated with maximal isometric force [isometric maximal voluntary contraction (IMVC) and maximal rate of force development (MRFD)] 10 s after different fatiguing exercises and during the recovery period (1-8 min after). Ten young men completed six experimental sessions (3 fatiguing exercises×2 types of fatigue measurements). The fatiguing exercises were: 30 s all-out intensity (AI), 10 min at severe intensity (SI) and 90 min at moderate intensity (MI). Relative Pmax decreased more than IMVC after AI exercise (P=0.005) while the opposite was found after SI (P=0.005) and MI tasks (P<0.001). There was no difference between the decrease in IMVC and Tmax after the AI exercise, but IMVC decreased more than Tmax immediately following and during the recovery from the SI (P=0.042) and MI exercises (P<0.001). Depression of MRFD was greater than Vmax after all fatiguing exercises and during recovery (all P<0.05). Despite the general definition of fatigue, isometric assessment of fatigue is not interchangeable with dynamic assessment following dynamic exercises with large muscle mass of different intensities, i.e. the results from isometric function cannot be used to estimate dynamic function and vice versa. This implies different physiological mechanisms for the various measures of fatigue.


Assuntos
Exercício Físico/fisiologia , Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Adulto , Humanos , Masculino , Adulto Jovem
9.
J Sports Sci ; 37(13): 1457-1463, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30657013

RESUMO

Altering torsional stiffness of cycling shoe soles may be a novel approach to reducing knee joint moments and overuse injuries during cycling. We set out to determine if the magnitude of three-dimensional knee moments were different between cycling shoe soles with different torsional stiffnesses. Eight trained male cyclists cycled at 90% lactate threshold power output in one of two cycling shoe conditions in a randomized crossover design. The shoe sole was considered torsionally flexible (FLEX) compared to a relatively stiffer (STIFF) sole. Gross efficiency (GE) and knee joint moments were quantified. No significant effect of shoe condition was seen in GE (21.4 ± 1.1% and 20.9 ± 1.6% for FLEX and STIFF, respectively, P = 0.12), nor in three-dimensional knee moments. 4 of the 8 subjects had reduced knee moments in at least 2 of the 3 moment directions. These "responders" were significantly shorter (1.73 ± 0.02 m vs 1.81 ± 0.04 m, P = 0.017) and had a higher relative maximal aerobic power (MAP) (4.6 ± 0.3 W∙kg-1 vs 3.9 ± 0.3 W∙kg-1, P = 0.024) compared to non-responders. These results suggest that certain shoe characteristics may influence certain individuals differently because these participants belong to different "functional groups"; certain individuals may respond positively to FLEX, while others may not. Further studies should test this proposed hypothesis.


Assuntos
Ciclismo/fisiologia , Articulação do Joelho/fisiologia , Sapatos , Adulto , Limiar Anaeróbio , Ciclismo/lesões , Fenômenos Biomecânicos , Estudos Cross-Over , Transtornos Traumáticos Cumulativos/fisiopatologia , Transtornos Traumáticos Cumulativos/prevenção & controle , Desenho de Equipamento , Humanos , Ácido Láctico/sangue , Masculino , Estudos de Tempo e Movimento , Suporte de Carga , Adulto Jovem
10.
Pflugers Arch ; 470(8): 1243-1254, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29671103

RESUMO

Fatigue of single mouse fibers during repeated high-frequency stimulation results initially from decreased Ca2+ sensitivity while free myoplasmic calcium concentration ([Ca2+]m) increases, followed by decreasing [Ca2+]m. Recovery of active force with low-frequency stimulation is slow and persistent fatigue results from low [Ca2+]m. However, the consequences of intermittent submaximal contractions are not known. The aim of the present study was to investigate the changes in [Ca2+]m and active force during intermittent submaximal contractions and subsequent recovery. Single fibers of mouse flexor digitorum brevis muscles at 32 °C were stimulated with 40 or 50 Hz, for 350 ms every 2 s for 2 min and then every 1 s until < 40% of initial force. Values obtained during the intermittent stimulation were compared with a control force-[Ca2+]m relationship. A "P"-shaped pattern in the force-[Ca2+]m relationship was observed during intermittent stimulation. Early in the intermittent stimulation, [Ca2+]m increased while active force decreased. Subsequent force potentiation was accompanied by increased Ca2+ sensitivity. Later, as active force declined, [Ca2+]m decreased significantly (p < 0.001). This was followed, in the final phase, by a significant decrease in Ca2+ sensitivity determined by [Ca2+]m at half-maximal force (Ca50) (p = 0.001). Low-frequency fatigue persisted during recovery while Ca50 was not significantly different from prefatigue (p > 0.5). In conclusion, the main mechanism of fatigue is due to decreases in both [Ca2+]m and Ca2+ sensitivity following the initial force potentiation. The intermittent submaximal contractions resulted in persistent low-frequency fatigue seen during recovery, which was explained by depressed [Ca2+]m with no change in Ca2+ sensitivity.


Assuntos
Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Animais , Estimulação Elétrica/métodos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia
11.
J Appl Biomech ; 34(3): 220­225, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364050

RESUMO

The length of a muscle's moment arm can be estimated non-invasively using ultrasound, and the tendon excursion method. The main assumption with the tendon excursion method, however, is that the force acting on the tendon during passive rotation is constant. However, passive force changes through the range of motion, and moment arm is underestimated. We attempted to account for passive force on the measurement of Achilles tendon moment arm using the tendon excursion method in 8 male and female runners. Tendon excursion was measured using ultrasound while the ankle was passively rotated at 0.17 rad•s-1. Moment arm was calculated at 5° intervals as the ratio of tendon displacement to joint rotation from 70° to 115°. Passive moment (MP) was measured by a dynamometer. The displacement attributable to MP was calculated by monitoring tendon displacement during a ramp isometric maximum contraction. MP was 5.7±2.1 Nm at 70° and decreased exponentially from 70°-90°. °. This resulted in MP-corrected moment arms that were significantly larger than uncorrected moment arms at joint angles where MP was present. Further, MP-corrected moment arms did not change with ankle angle, which was not the case for uncorrected moment arms.

12.
J Appl Biomech ; 34(3): 220-225, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873287

RESUMO

The length of a muscle's moment arm can be estimated noninvasively using ultrasound and the tendon excursion method. The main assumption with the tendon excursion method is that the force acting on the tendon during passive rotation is constant. However, passive force changes through the range of motion, and thus moment arm is underestimated. The authors attempted to account for passive force on the measurement of Achilles tendon moment arm using the tendon excursion method in 8 male and female runners. Tendon excursion was measured using ultrasound while the ankle was passively rotated at 0.17 rad·s-1. Moment arm was calculated at 5° intervals as the ratio of tendon displacement to joint rotation from 70° to 115°. Passive moment (MP) was measured using a dynamometer. The displacement attributable to MP was calculated by monitoring tendon displacement during a ramp isometric maximum contraction. MP was 5.7 (2.1) N·m at 70° and decreased exponentially from 70° to 90°. This resulted in MP-corrected moment arms that were significantly larger than uncorrected moment arms at joint angles where MP was present. Furthermore, MP-corrected moment arms did not change with ankle angle, which was not the case for uncorrected moment arms.


Assuntos
Tendão do Calcâneo/fisiologia , Articulação do Tornozelo/diagnóstico por imagem , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular , Tendão do Calcâneo/diagnóstico por imagem , Adulto , Atletas , Feminino , Humanos , Contração Isométrica , Masculino , Músculo Esquelético/diagnóstico por imagem , Rotação , Ultrassonografia , Adulto Jovem
14.
Eur J Appl Physiol ; 117(6): 1059-1071, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28349260

RESUMO

Maximal active force of skeletal muscle contraction occurs at a sarcomere length where overlap of thick and thin filaments is optimal. However, the interaction of muscle length and active force is complicated. Active force, is the force generated by energy-requiring processes. To calculate active force, passive force provided by in-parallel structures must be subtracted from total force. Sarcomere length will change during a contraction with constant muscle-tendon length, due to tendon stretch. Passive force therefore changes during the contraction. Taking this into account, it has been demonstrated that there is less length dependence of fatigue than previously thought. The remaining difference may be associated with length dependence of activation, a property that is evident with submaximal activation. The sarcomere length at which peak contraction occurs is longer than the length that gives optimal overlap of the filaments and this shift of optimal length appears to be due to increased Ca2+ sensitivity. The increased Ca2+ sensitivity occurs because at longer lengths, the myofilaments are closer together allowing greater force than expected. However, the potential for length-dependent activation has been challenged. Submaximal contractions obtained by recruitment of fewer motor units but with maximal stimulation across different muscle lengths still demonstrate length-dependent activation. In contrast, contractions with similar absolute electromyographic signal magnitude at different lengths do not demonstrate length-dependent activation. Recent work has improved our understanding of how sarcomere length impacts the force of contraction but also reveals inadequacies in our knowledge that need to be addressed by additional research.


Assuntos
Contração Muscular , Músculo Esquelético/fisiologia , Animais , Cálcio/metabolismo , Humanos , Fadiga Muscular , Força Muscular , Músculo Esquelético/metabolismo
16.
J Cell Sci ; 125(Pt 9): 2105-14, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22627029

RESUMO

ATP provides the energy in our muscles to generate force, through its use by myosin ATPases, and helps to terminate contraction by pumping Ca(2+) back into the sarcoplasmic reticulum, achieved by Ca(2+) ATPase. The capacity to use ATP through these mechanisms is sufficiently high enough so that muscles could quickly deplete ATP. However, this potentially catastrophic depletion is avoided. It has been proposed that ATP is preserved not only by the control of metabolic pathways providing ATP but also by the regulation of the processes that use ATP. Considering that contraction (i.e. myosin ATPase activity) is triggered by release of Ca(2+), the use of ATP can be attenuated by decreasing Ca(2+) release within each cell. A lower level of Ca(2+) release can be accomplished by control of membrane potential and by direct regulation of the ryanodine receptor (RyR, the Ca(2+) release channel in the terminal cisternae). These highly redundant control mechanisms provide an effective means by which ATP can be preserved at the cellular level, avoiding metabolic catastrophe. This Commentary will review some of the known mechanisms by which this regulation of Ca(2+) release and contractile response is achieved, demonstrating that skeletal muscle fatigue is a consequence of attenuation of contractile activation; a process that allows avoidance of metabolic catastrophe.


Assuntos
Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Miosinas/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Calmodulina , Humanos , Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38631044

RESUMO

Classical training theory postulates that performance fatigability following a training session should be proportional to the total work done (TWD); however, this notion has been questioned. This study investigated indices of performance and perceived fatigability after primary sessions of high-intensity interval training (HIIT) and constant work rate (CWR) cycling, each followed by a cycling time-to-task failure (TTF) bout. On separate days, 16 participants completed an incremental cycling test, and, in a randomized order, (i) a TTF trial at 80% of peak power output (PPO), (ii) an HIIT session, and (iii) a CWR session, both of which were immediately followed by a TTF trial at 80% PPO. Central and peripheral aspects of performance fatigability were measured using interpolated twitch technique, and perceptual measures were assessed prior to and following the HIIT and CWR trials, and again following the TTF trial. Despite TWD being less following HIIT (P = 0.029), subsequent TTF trial was an average of 125 s shorter following HIIT versus CWR (P < 0.001), and this was accompanied by greater impairments in voluntary and electrically evoked forces (P < 0.001), as well as exacerbated perceptual measures (P < 0.001); however, there were no differences in any fatigue measure following the TTF trial (P ≥ 0.149). There were strong correlations between the decline in TTF and indices of peripheral (r = 0.70) and perceived fatigability (r ≥ 0.80) measured at the end of HIIT and CWR. These results underscore the dissociation between TWD and performance fatigability and highlight the importance of peripheral components of fatigability in limiting endurance performance during high-intensity cycling exercise.

18.
Eur J Appl Physiol ; 113(9): 2313-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23712215

RESUMO

PURPOSE: Decreased whole-body energy cost of running has been associated with an increased Achilles tendon stiffness. It is usually assumed that this lower energy cost can be attributed to less muscle fascicle shortening with a stiffer tendon. Increased fiber shortening is an important determinant of muscle energetics in vitro. However, other factors, like increased muscle activation may be important when considering whole muscle energetics in vivo. METHODS: To determine the effects of a small additional muscle shortening on skeletal muscle energy requirement, 19 subjects performed 30 plantarflexions on two separate occasions: isometric (ISO) and isokinetic (KIN, 6.98 rad s(-1)), each with a target of 50 % of maximum isometric torque. Medial gastrocnemius muscle fascicle length (FL) was measured by ultrasound and rate of oxyhemoglobin (HbO2) desaturation was measured during blood flow occlusion using near-infrared spectroscopy. RESULTS: KIN resulted in significantly greater muscle shortening (23.8 ± 1.3 mm) than ISO (18.3 ± 1.0 mm, p < 0.001, mean ± SEM), and greater shortening velocity (KIN = 2.5 ± 0.3 FL s(-1), ISO = 1.1 ± 0.1 FL s(-1), p < 0.001). Rate of HbO2 desaturation was 19 ± 7 %, greater in KIN than ISO (p < 0.01), despite 19 ± 2 % lower mean torque (p < 0.001) and 9.8 ± 1.6 Nm s lower mean impulse per contraction (p < 0.001) in KIN compared to ISO. Root mean square for EMG was significantly greater (p < 0.05) during KIN (73 ± 3 %) than during ISO (63 ± 2 %). CONCLUSION: These results illustrate that muscle energy requirement is greater when muscle fascicle shortening and/or velocity of shortening is increased, and suggest that greater activation contributes to that increased energy requirement.


Assuntos
Metabolismo Energético/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Tendão do Calcâneo/fisiologia , Adulto , Feminino , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Corrida/fisiologia , Torque
19.
Int J Exerc Sci ; 16(4): 912-923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637240

RESUMO

The purpose of this study was to assess the test-retest reliability of a 4-minute all-out critical force test in well-trained rock climbers. Thirteen rock climbers (n=4 females) completed a familiarization session and two all-out critical force tests on different days. During each trial, participants completed 24 repetitions of 7s right-handed, maximal effort hangs from a 20mm edge interspersed with 3 s rest. The end-test force (EF; i.e., critical force), impulse above EF (IEF), and peak force achieved during the test were analyzed with paired t-tests to determine differences between trials. Intraclass correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman analysis were performed to quantify the relative and absolute reliability of the measure, respectively. The level of significance for this study was set at p<0.05. There were no significant differences between trials for any of the reported variables (P≥0.455). For EF, IEF, and peak force, ICC was 0.848, 0.820, and 0.938, respectively; and CV was 21.0%, 13.2%, and 5.6%, respectively. Bland-Altman analyses showed a mean relative bias of -2.3%, -2.8%, and -1.3%, with 95% limits of agreement (LoA) of -62.6% to 58.1%, -40.5% to 30.9%, and -17.2% to 14.6% for EF, IEF, and peak force, respectively, however linear regression revealed a significant proportional bias for EF (p = 0.026, R2 = 0.377). The reliability of this protocol was good to excellent for all parameters; however, there was larger intra-individual variability for EF and IEF. This study suggests that when using the 4-min all-out critical force test in rock climbers, coaches and athletes should be aware that there may be a trade-off between the test's practicality and the precision of its results.

20.
Sports Biomech ; : 1-11, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37722704

RESUMO

This study assessed the validity of the Entralpi force plate in the assessment of finger flexor performance in rock climbers. In addition to a static force evaluation, peak force, peak impulse, and total impulse were measured during 30 all-out performance trials by 15 participants, in which force during the trials was recorded simultaneously by the Entralpi and a Pasco force plate. Agreement between devices was assessed by a variety of statistical analyses, including intraclass correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman analyses. The static force evaluation showed a mean relative error of 0.41% and excellent day-to-day reliability (ICC = 1; CV = 0.03%). Peak force, peak impulse, and total impulse from the performance trials demonstrated strong agreement (ICC ≥ 0.991, CV ≤ 1.9%, Bland-Altman mean bias ≤ 0.5%). These results illustrate that the Entralpi force plate provides accurate and reliable data for rock climbing related tasks at an affordable cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA