Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Mol Genet ; 26(17): 3327-3341, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28595361

RESUMO

Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Células-Tronco Neurais/metabolismo , Animais , Fator de Indução de Apoptose/metabolismo , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Cognição , Disfunção Cognitiva/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/metabolismo , Transdução de Sinais
2.
EMBO J ; 33(22): 2676-91, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25298396

RESUMO

Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial/fisiologia , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , GTP Fosfo-Hidrolases/genética , Células HeLa , Humanos , Camundongos , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Consumo de Oxigênio/fisiologia , Multimerização Proteica/fisiologia
3.
J Biol Chem ; 286(6): 4772-82, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21041314

RESUMO

Mitochondrial dynamics have been extensively studied in the context of classical cell death models involving Bax-mediated cytochrome c release. Excitotoxic neuronal loss is a non-classical death signaling pathway that occurs following overactivation of glutamate receptors independent of Bax activation. Presently, the role of mitochondrial dynamics in the regulation of excitotoxicity remains largely unknown. Here, we report that NMDA-induced excitotoxicity results in defects in mitochondrial morphology as evident by the presence of excessive fragmented mitochondria, cessation of mitochondrial fusion, and cristae dilation. Up-regulation of the mitochondrial inner membrane GTPase, Opa1, is able to restore mitochondrial morphology and protect neurons against excitotoxic injury. Opa1 functions downstream of the calcium-dependent protease, calpain. Inhibition of calpain activity by calpastatin, an endogenous calpain inhibitor, significantly rescued mitochondrial defects and maintained neuronal survival. Opa1 was required for calpastatin-mediated neuroprotection because the enhanced survival found following NMDA-induced toxicity was significantly reduced upon loss of Opa1. Our results define a mechanism whereby breakdown of the mitochondrial network mediated through loss of Opa1 function contributes to neuronal death following excitotoxic neuronal injury. These studies suggest Opa1 as a potential therapeutic target to promote neuronal survival following acute brain damage and neurodegenerative diseases.


Assuntos
Cerebelo/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cerebelo/citologia , Citotoxinas/efeitos adversos , Citotoxinas/farmacologia , Agonistas de Aminoácidos Excitatórios/efeitos adversos , Agonistas de Aminoácidos Excitatórios/farmacologia , GTP Fosfo-Hidrolases/genética , Camundongos , Proteínas Mitocondriais/genética , N-Metilaspartato/efeitos adversos , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/citologia
4.
J Cell Biol ; 178(1): 129-39, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17591923

RESUMO

The Retinoblastoma protein p107 regulates the neural precursor pool in both the developing and adult brain. As p107-deficient mice exhibit enhanced levels of Hes1, we questioned whether p107 regulates neural precursor self-renewal through the repression of Hes1. p107 represses transcription at the Hes1 promoter. Despite an expanded neural precursor population, p107-null mice exhibit a striking reduction in the number of cortical neurons. Hes1 deficiency rescues neurosphere numbers in p107-null embryos. We find that the loss of a single Hes1 allele in vivo restores the number of neural precursor cells at the ventricular zone. Neuronal birthdating analysis reveals a dramatic reduction in the rate of neurogenesis, demonstrating impairment in p107(-/-) progenitors to commit to a neuronal fate. The loss of a single Hes1 allele restores the number of newly generated neurons in p107-deficient brains. Together, we identify a novel function for p107 in promoting neural progenitor commitment to a neuronal fate.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Proteína p107 Retinoblastoma-Like/deficiência , Células-Tronco/metabolismo , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/citologia , Embrião de Mamíferos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Cinética , Camundongos , Camundongos Knockout , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/análise , Regiões Promotoras Genéticas , Proteína p107 Retinoblastoma-Like/genética , Fatores de Transcrição HES-1 , Transcrição Gênica
5.
J Cell Biol ; 158(3): 507-17, 2002 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12147675

RESUMO

Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury.


Assuntos
Apoptose/fisiologia , Encéfalo/embriologia , Caspases/metabolismo , Flavoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Doenças Neurodegenerativas/enzimologia , Neurônios/enzimologia , Proteínas/metabolismo , Animais , Anticorpos/farmacologia , Fator de Indução de Apoptose , Fator Apoptótico 1 Ativador de Proteases , Encéfalo/citologia , Encéfalo/enzimologia , Camptotecina/farmacologia , Inibidores de Caspase , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Inibidores Enzimáticos/farmacologia , Flavoproteínas/genética , Frequência do Gene/fisiologia , Marcação In Situ das Extremidades Cortadas , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/citologia , Proteínas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transfecção , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2
6.
Cell Stem Cell ; 19(2): 232-247, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27237737

RESUMO

Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming.


Assuntos
Linhagem da Célula , Núcleo Celular/genética , Dinâmica Mitocondrial , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/farmacologia , Animais , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Núcleo Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Deleção de Genes , Metabolômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
7.
J Neurosci ; 24(44): 10003-12, 2004 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-15525786

RESUMO

The p53 tumor suppressor gene has been implicated in the regulation of apoptosis in a number of different neuronal death paradigms. Because of the importance of p53 in neuronal injury, we questioned the mechanism underlying p53-mediated apoptosis in neurons. Using adenoviral-mediated gene delivery, reconstitution experiments, and mice carrying a knock-in mutation in the endogenous p53 gene, we show that the transactivation function of p53 is essential to induce neuronal cell death. Although p53 possesses two transactivation domains that can activate p53 targets independently, we demonstrate that the first activation domain (ADI) is required to drive apoptosis after neuronal injury. Furthermore, the BH3-only proteins Noxa and PUMA exhibit differential regulation by the two transactivation domains. Here, we show that Noxa can be induced by either activation domain, whereas PUMA induction requires both activation domains to be intact. Unlike Noxa, the upregulation of PUMA alone is sufficient to induce neuronal cell death. We demonstrate, therefore, that the first transactivation domain of p53 is indispensable for the induction of neuronal cell death.


Assuntos
Apoptose/fisiologia , Neurônios/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Células Cultivadas , Dano ao DNA/fisiologia , Camundongos , Camundongos Knockout , Mutação Puntual , Estrutura Terciária de Proteína , Ativação Transcricional/fisiologia , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/fisiologia , Regulação para Cima
8.
Nat Commun ; 5: 3550, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686499

RESUMO

Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells.


Assuntos
Acidose/metabolismo , Acidose/fisiopatologia , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Acidose/genética , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Camundongos , Mitose , Fosforilação Oxidativa
9.
J Biol Chem ; 282(33): 23788-98, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17537722

RESUMO

Of the GTPases involved in the regulation of the fusion machinery, mitofusin 2 (Mfn2) plays an important role in the nervous system as point mutations of this isoform are associated with Charcot Marie Tooth neuropathy. Here, we investigate whether Mfn2 plays a role in the regulation of neuronal injury. We first examine mitochondrial dynamics following different modes of injury in cerebellar granule neurons. We demonstrate that neurons exposed to DNA damage or oxidative stress exhibit extensive mitochondrial fission, an early event preceding neuronal loss. The extent of mitochondrial fragmentation and remodeling is variable and depends on the mode and the severity of the death stimuli. Interestingly, whereas mitofusin 2 loss of function significantly induces cell death in the absence of any cell death stimuli, expression of mitofusin 2 prevents cell death following DNA damage, oxidative stress, and K+ deprivation induced apoptosis. More importantly, whereas wild-type Mfn2 and the hydrolysis-deficient mutant of Mfn2 (Mfn2(RasG12V)) function equally to promote fusion and lengthening of mitochondria, the activated Mfn2(RasG12V) mutant shows a significant increase in the protection of neurons against cell death and release of proapoptotic factor cytochrome c. These findings highlight a signaling role for Mfn2 in the regulation of apoptosis that extends beyond its role in mitochondrial fusion.


Assuntos
Cerebelo/citologia , Proteínas de Membrana/fisiologia , Mitocôndrias/patologia , Proteínas Mitocondriais/fisiologia , Neurônios/ultraestrutura , Animais , Apoptose , Morte Celular , Linhagem Celular , Doença de Charcot-Marie-Tooth/etiologia , Dano ao DNA , GTP Fosfo-Hidrolases , Humanos , Fusão de Membrana , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Neurônios/citologia , Estresse Oxidativo , Transfecção
10.
EMBO J ; 25(17): 4061-73, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16917506

RESUMO

The mitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and induces apoptosis. Recent studies, however, have indicated the importance of AIF for survival in mitochondria. In the absence of a means to dissociate these two functions, the precise roles of AIF remain unclear. Here, we dissociate these dual roles using mitochondrially anchored AIF that cannot be released during apoptosis. Forebrain-specific AIF null (tel. AifDelta) mice have defective cortical development and reduced neuronal survival due to defects in mitochondrial respiration. Mitochondria in AIF deficient neurons are fragmented with aberrant cristae, indicating a novel role of AIF in controlling mitochondrial structure. While tel. AifDelta Apaf1(-/-) neurons remain sensitive to DNA damage, mitochondrially anchored AIF expression in these cells significantly enhanced survival. AIF mutants that cannot translocate into nucleus failed to induce cell death. These results indicate that the proapoptotic role of AIF can be uncoupled from its physiological function. Cell death induced by AIF is through its proapoptotic activity once it is translocated to the nucleus, not due to the loss of AIF from the mitochondria.


Assuntos
Fator de Indução de Apoptose/fisiologia , Apoptose , Mitocôndrias/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Fator de Indução de Apoptose/genética , Sobrevivência Celular , Células Cultivadas , Dano ao DNA , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Consumo de Oxigênio , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Transporte Proteico
11.
J Biol Chem ; 279(27): 28706-14, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15105421

RESUMO

The p53 tumor suppressor gene is believed to play an important role in neuronal cell death in acute neurological disease and in neurodegeneration. The p53 signaling cascade is complex, and the mechanism by which p53 induces apoptosis is cell type-dependent. Using DNA microarray analysis, we have found a striking induction of the proapoptotic gene, SIVA. SIVA is a proapoptotic protein containing a death domain and interacts with members of the tumor necrosis factor receptor family as well as anti-apoptotic Bcl-2 family proteins. SIVA is induced following direct p53 gene delivery, treatment with a DNA-damaging agent camptothecin, and stroke injury in vivo. SIVA up-regulation is sufficient to initiate the apoptotic cascade in neurons. Through isolation and analysis of the SIVA promoter, we have identified response elements for both p53 and E2F1. Like p53, E2F1 is another tumor suppressor gene involved in the regulation of apoptosis, including neuronal injury models. We have identified E2F consensus sites in the promoter region, whereas p53 recognition sequences were found in intron1. Sequence analysis has shown that these consensus sites are also conserved between mouse and human SIVA genes. Electrophoretic mobility shift assays reveal that both transcription factors are capable of binding to putative consensus sites, and luciferase reporter assays reveal that E2F1 and p53 can activate transcription from the SIVA promoter. Here, we report that the proapoptotic gene, SIVA, which functions in a broad spectrum of cell types, is a direct transcriptional target for both tumor suppressors, p53 and E2F1.


Assuntos
Apoptose , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenoviridae/genética , Animais , Proteínas Reguladoras de Apoptose , Sequência de Bases , Sítios de Ligação , Western Blotting , Camptotecina/farmacologia , Células Cultivadas , Dano ao DNA , DNA Complementar/metabolismo , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Genes Reporter , Humanos , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Dados de Sequência Molecular , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Regulação para Cima
12.
EMBO J ; 21(13): 3337-46, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12093735

RESUMO

Correct cell cycle regulation and terminal mitosis are critical for nervous system development. The retinoblastoma (Rb) protein is a key regulator of these processes, as Rb-/- embryos die by E15.5, exhibiting gross hematopoietic and neurological defects. The extensive apoptosis in Rb-/- embryos has been attributed to aberrant S phase entry resulting in conflicting growth control signals in differentiating cells. To assess the role of Rb in cortical development in the absence of other embryonic defects, we examined mice with telencephalon-specific Rb deletions. Animals carrying a floxed Rb allele were interbred with mice in which cre was knocked into the Foxg1 locus. Unlike germline knockouts, mice specifically deleted for Rb in the developing telencephalon survived until birth. In these mutants, Rb-/- progenitor cells divided ectopically, but were able to survive and differentiate. Mutant brains exhibited enhanced cellularity due to increased proliferation of neuroblasts. These studies demonstrate that: (i) cell cycle deregulation during differentiation does not necessitate apoptosis; (ii) Rb-deficient mutants exhibit enhanced neuroblast proliferation; and (iii) terminal mitosis may not be required to initiate differentiation.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Proteína do Retinoblastoma/fisiologia , Telencéfalo/embriologia , Alelos , Animais , Apoptose , Biomarcadores , Ciclo Celular , Diferenciação Celular , Divisão Celular , Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia , Cruzamentos Genéticos , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Morte Fetal/genética , Fatores de Transcrição Forkhead , Genes Letais , Genes do Retinoblastoma , Camundongos , Camundongos Knockout , Mutagênese Insercional , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Especificidade de Órgãos , Proteína do Retinoblastoma/deficiência , Telencéfalo/anormalidades , Tubulina (Proteína)/biossíntese , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA