Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180146

RESUMO

Platelets are known primarily for their role in blood clotting; however, it is becoming clear that they play diverse roles beyond that of haemostasis. Exercise has been shown to activate platelets and stimulate neurogenesis, neuroplasticity and improve cognitive function, highlighting a potentially powerful link between platelet function and brain health. Despite this clear link between platelets and the brain, very little is known about the behaviour of platelets through the cerebral circulation in humans. We examined platelet concentration across the brain in exercising humans at sea level (340 m) and high altitude (6-8 days at 3800 m; a stimulus known to modify platelet function). During intense exercise at sea level, platelet concentration increased similarly by 27 ± 17% in the arterial and internal jugular venous circulations (exercise: P < 0.001, interaction: P = 0.262), indicating no uptake or release of platelets into/from the brain. At high altitude, resting platelet concentrations were similar to sea level values in both the arterial and jugular venous circulations (P = 0.590); however, intense exercise at high altitude caused a 31 ± 35% decrease in platelet concentration across the brain (P = 0.016). This divergent response across the brain was not observed in any other haematological or metabolic variables. These data highlight a unique situation where the combination of intense exercise and high altitude hypoxia cause a decrease in platelet concentration across the cerebral circulation. The physiological implications and mechanisms that might influence platelet function across the brain during exercise at high altitude remain to be established. KEY POINTS: Platelets are known primarily for their role in blood clotting; however, it is becoming clear that they play diverse roles beyond that of haemostasis. Exercise has been shown to activate platelets, which in turn stimulate neurogenesis, neuroplasticity and improve cognitive function, highlighting a powerful link between platelet function and brain health. At sea level, platelet concentration in blood going into and out of the brain was similar at rest, during maximal exercise and in recovery from exercise. During maximal exercise at high altitude, platelet concentration was 31% lower in the blood exiting the brain; the final destination of these platelets is unknown. The physiological implications and mechanisms that might influence platelet function across the cerebral circulation during exercise at high altitude remain to be established.

2.
J Physiol ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348606

RESUMO

We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.

3.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R46-R53, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766773

RESUMO

Despite elite human free divers achieving incredible feats in competitive free diving, there has yet to be a study that compares consummate divers, (i.e. northern elephant seals) to highly conditioned free divers (i.e., elite competitive free-diving humans). Herein, we compare these two diving models and suggest that hematological traits detected in seals reflect species-specific specializations, while hematological traits shared between the two species are fundamental mammalian characteristics. Arterial blood samples were analyzed in elite human free divers (n = 14) during a single, maximal volitional apnea and in juvenile northern elephant seals (n = 3) during rest-associated apnea. Humans and elephant seals had comparable apnea durations (∼6.5 min) and end-apneic arterial Po2 [humans: 40.4 ± 3.0 mmHg (means ± SE); seals: 27.1 ± 5.9 mmHg; P = 0.2]. Despite similar increases in arterial Pco2 (humans: 33 ± 5%; seals: 16.3 ± 5%; P = 0.2), only humans experienced reductions in pH from baseline (humans: 7.45 ± 0.01; seals: 7.39 ± 0.02) to end apnea (humans: 7.37 ± 0.01; seals: 7.38 ± 0.02; P < 0.0001). Hemoglobin P50 was greater in humans compared to elephant seals (29.9 ± 1.5 and 28.7 ± 0.6 mmHg, respectively; P = 0.046). Elephant seals overall had higher carboxyhemoglobin (COHb) levels (5.9 ± 2.6%) compared to humans (0.8 ± 1.2%; P < 0.0001); however, following apnea, COHb was reduced in seals (baseline: 6.1 ± 0.3%; end apnea: 5.6 ± 0.3%) and was slightly elevated in humans (baseline: 0.7 ± 0.1%; end apnea: 0.9 ± 0.1%; P < 0.0002, both comparisons). Our data indicate that during static apnea, seals have reduced hemoglobin P50, greater pH buffering, and increased COHb levels. The differences in hemoglobin P50 are likely due to the differences in the physiological environment between the two species during apnea, whereas enhanced pH buffering and higher COHb may represent traits selected for in elephant seals.NEW & NOTEWORTHY This study uses similar methods and protocols in elite human free divers and northern elephant seals. Using highly conditioned divers (elite free-diving humans) and highly adapted divers (northern elephant seals), we explored which hematological traits are fundamentally mammalian and which may have been selected for. We found differences in P50, which may be due to different physiological environments between species, while elevated pH buffering and carbon monoxide levels might have been selected for in seals.


Assuntos
Apneia , Mergulho , Focas Verdadeiras , Animais , Focas Verdadeiras/sangue , Humanos , Mergulho/fisiologia , Apneia/sangue , Apneia/fisiopatologia , Masculino , Adulto , Feminino , Especificidade da Espécie , Hemoglobinas/metabolismo , Adulto Jovem , Dióxido de Carbono/sangue , Oxigênio/sangue
4.
J Physiol ; 600(6): 1373-1383, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743333

RESUMO

High altitude-induced hypoxaemia is often associated with peripheral vascular dysfunction. However, the basic mechanism(s) underlying high-altitude vascular impairments remains unclear. This study tested the hypothesis that oxidative stress contributes to the impairments in endothelial function during early acclimatization to high altitude. Ten young healthy lowlanders were tested at sea level (344 m) and following 4-6 days at high altitude (4300 m). Vascular endothelial function was determined using the isolated perfused forearm technique with forearm blood flow (FBF) measured by strain-gauge venous occlusion plethysmography. FBF was quantified in response to acetylcholine (ACh), sodium nitroprusside (SNP) and a co-infusion of ACh with the antioxidant vitamin C (ACh+VitC). The total FBF response to ACh (area under the curve) was ∼30% lower at high altitude than at sea level (P = 0.048). There was no difference in the response to SNP at high altitude (P = 0.860). At sea level, the co-infusion of ACh+VitC had no influence on the FBF dose response (P = 0.268); however, at high altitude ACh+VitC resulted in an average increase in the FBF dose response by ∼20% (P = 0.019). At high altitude, the decreased FBF response to ACh, and the increase in FBF in response to ACh+VitC, were associated with the magnitude of arterial hypoxaemia (R2 = 0.60, P = 0.008 and R2 = 0.63, P = 0.006, respectively). Collectively, these data support the hypothesis that impairments in vascular endothelial function at high altitude are in part attributable to oxidative stress, a consequence of the magnitude of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related vascular dysfunction. KEY POINTS: Vascular dysfunction has been demonstrated in lowlanders at high altitude (>4000 m). However, the extent of impairment and the delineation of contributing mechanisms have remained unclear. Using the gold-standard isolated perfused forearm model, we determined the extent of vasodilatory dysfunction and oxidative stress as a contributing mechanism in healthy lowlanders before and 4-6 days after rapid ascent to 4300 m. The total forearm blood flow response to acetylcholine at high altitude was decreased by ∼30%. Co-infusion of acetylcholine with the antioxidant vitamin C partially restored the total forearm blood flow by ∼20%. The magnitude of forearm blood flow reduction, as well as the impact of oxidative stress, was positively associated with the individual severity of hypoxaemia. These data extend our basic understanding of vascular (mal)adaptation to high-altitude sojourns, with important implications for understanding the aetiology of high altitude-related changes in endothelial-mediated vasodilatory function.


Assuntos
Antioxidantes , Ácido Ascórbico , Acetilcolina/farmacologia , Altitude , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Endotélio Vascular/fisiologia , Antebraço/irrigação sanguínea , Humanos , Hipóxia , Nitroprussiato/farmacologia , Fluxo Sanguíneo Regional , Vasodilatação , Vasodilatadores/farmacologia
5.
J Physiol ; 600(6): 1385-1403, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904229

RESUMO

Cerebrovascular CO2 reactivity (CVR) is often considered a bioassay of cerebrovascular endothelial function. We recently introduced a test of cerebral shear-mediated dilatation (cSMD) that may better reflect endothelial function. We aimed to determine the nitric oxide (NO)-dependency of CVR and cSMD. Eleven volunteers underwent a steady-state CVR test and transient CO2 test of cSMD during intravenous infusion of the NO synthase inhibitor NG -monomethyl-l-arginine (l-NMMA) or volume-matched saline (placebo; single-blinded and counter-balanced). We measured cerebral blood flow (CBF; duplex ultrasound), intra-arterial blood pressure and PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ . Paired arterial and jugular venous blood sampling allowed for the determination of trans-cerebral NO2- exchange (ozone-based chemiluminescence). l-NMMA reduced arterial NO2- by ∼25% versus saline (74.3 ± 39.9 vs. 98.1 ± 34.2 nM; P = 0.03). The steady-state CVR (20.1 ± 11.6 nM/min at baseline vs. 3.2 ± 16.7 nM/min at +9 mmHg PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ ; P = 0.017) and transient cSMD tests (3.4 ± 5.9 nM/min at baseline vs. -1.8 ± 8.2 nM/min at 120 s post-CO2 ; P = 0.044) shifted trans-cerebral NO2- exchange towards a greater net release (a negative value indicates release). Although this trans-cerebral NO2- release was abolished by l-NMMA, CVR did not differ between the saline and l-NMMA trials (57.2 ± 14.6 vs. 54.1 ± 12.1 ml/min/mmHg; P = 0.49), nor did l-NMMA impact peak internal carotid artery dilatation during the steady-state CVR test (6.2 ± 4.5 vs. 6.2 ± 5.0% dilatation; P = 0.960). However, l-NMMA reduced cSMD by ∼37% compared to saline (2.91 ± 1.38 vs. 4.65 ± 2.50%; P = 0.009). Our findings indicate that NO is not an obligatory regulator of steady-state CVR. Further, our novel transient CO2 test of cSMD is largely NO-dependent and provides an in vivo bioassay of NO-mediated cerebrovascular function in humans. KEY POINTS: Emerging evidence indicates that a transient CO2 stimulus elicits shear-mediated dilatation of the internal carotid artery, termed cerebral shear-mediated dilatation. Whether or not cerebrovascular reactivity to a steady-state CO2 stimulus is NO-dependent remains unclear in humans. During both a steady-state cerebrovascular reactivity test and a transient CO2 test of cerebral shear-mediated dilatation, trans-cerebral nitrite exchange shifted towards a net release indicating cerebrovascular NO production; this response was not evident following intravenous infusion of the non-selective NO synthase inhibitor NG -monomethyl-l-arginine. NO synthase blockade did not alter cerebrovascular reactivity in the steady-state CO2 test; however, cerebral shear-mediated dilatation following a transient CO2 stimulus was reduced by ∼37% following intravenous infusion of NG -monomethyl-l-arginine. NO is not obligatory for cerebrovascular reactivity to CO2 , but is a key contributor to cerebral shear-mediated dilatation.


Assuntos
Dióxido de Carbono , Óxido Nítrico , Circulação Cerebrovascular/fisiologia , Dilatação , Inibidores Enzimáticos/farmacologia , Humanos , Óxido Nítrico Sintase , Dióxido de Nitrogênio , ômega-N-Metilarginina/farmacologia
6.
J Physiol ; 599(14): 3513-3530, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34047356

RESUMO

KEY POINTS: We investigated the influence of arterial PCO2 (PaCO2 ) with and without experimentally altered pH on cerebral blood flow (CBF) regulation at sea level and with acclimatization to 5050 m. At sea level and high altitude, we assessed stepwise alterations in PaCO2 following metabolic acidosis (via 2 days of oral acetazolamide; ACZ) with and without acute restoration of pH (via intravenous sodium bicarbonate; ACZ+HCO3- ). Total resting CBF was unchanged between trials at each altitude even though arterial pH and [HCO3- ] (i.e. buffering capacity) were effectively altered. The cerebrovascular responses to changes in arterial [H+ ]/pH were consistent with the altered relationship between PaCO2 and [H+ ]/pH following ACZ at high altitude (i.e. leftward x-intercept shifts). Absolute cerebral blood velocity (CBV) and the sensitivity of CBV to PaCO2 was unchanged between trials at high altitude, indicating that CBF is acutely regulated by PaCO2 rather than arterial pH. ABSTRACT: Alterations in acid-base balance with progressive acclimatization to high altitude have been well-established. However, how respiratory alkalosis and the resultant metabolic compensation interact to regulate cerebral blood flow (CBF) is uncertain. We addressed this via three separate experimental trials at sea level and following partial acclimatization (14 to 20 days) at 5050 m; involving: (1) resting acid-base balance (control); (2) following metabolic acidosis via 2 days of oral acetazolamide at 250 mg every 8 h (ACZ; pH: Δ -0.07 ± 0.04 and base excess: Δ -5.7 ± 1.9 mEq⋅l-1 , trial effects: P < 0.001 and P < 0.001, respectively); and (3) after acute normalization of arterial acidosis via intravenous sodium bicarbonate (ACZ + HCO3- ; pH: Δ -0.01 ± 0.04 and base excess: Δ -1.5 ± 2.1 mEq⋅l-1 , trial effects: P = 1.000 and P = 0.052, respectively). Within each trial, we utilized transcranial Doppler ultrasound to assess the cerebral blood velocity (CBV) response to stepwise alterations in arterial PCO2 (PaCO2 ), i.e. cerebrovascular CO2 reactivity. Resting CBF (via Duplex ultrasound) was unaltered between trials within each altitude, indicating that respiratory compensation (i.e. Δ -3.4 ± 2.3 mmHg PaCO2 , trial effect: P < 0.001) was sufficient to offset any elevations in CBF induced via the ACZ-mediated metabolic acidosis. Between trials at high altitude, we observed consistent leftward shifts in both the PaCO2 -pH and CBV-pH responses across the CO2 reactivity tests with experimentally reduced arterial pH via ACZ. When indexed against PaCO2 - rather than pH - the absolute CBV and sensitivity of CBV-PaCO2 was unchanged between trials at high altitude. Taken together, following acclimatization, CO2 -mediated changes in cerebrovascular tone rather than arterial [H+ ]/pH is integral to CBF regulation at high altitude.


Assuntos
Acidose , Dióxido de Carbono , Aclimatação , Altitude , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Humanos
7.
J Physiol ; 599(5): 1685-1708, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442904

RESUMO

KEY POINTS: Iron acts as a cofactor in the stabilization of the hypoxic-inducible factor family, and plays an influential role in the modulation of hypoxic pulmonary vasoconstriction. It is uncertain whether iron regulation is altered in lowlanders during either (1) ascent to high altitude, or (2) following partial acclimatization, when compared to high-altitude adapted Sherpa. During ascent to 5050 m, the rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders; however, upon arrival to 5050 m, PASP levels were comparable in both groups, but the reduction in iron bioavailability was more prevalent in lowlanders compared to Sherpa. Following partial acclimatization to 5050 m, there were differential influences of iron status manipulation (via iron infusion or chelation) at rest and during exercise between lowlanders and Sherpa on the pulmonary vasculature. ABSTRACT: To examine the adaptational role of iron bioavailability on the pulmonary vascular responses to acute and chronic hypobaric hypoxia, the haematological and cardiopulmonary profile of lowlanders and Sherpa were determined during: (1) a 9-day ascent to 5050 m (20 lowlanders; 12 Sherpa), and (2) following partial acclimatization (11 ± 4 days) to 5050 m (18 lowlanders; 20 Sherpa), where both groups received an i.v. infusion of either iron (iron (iii)-hydroxide sucrose) or an iron chelator (desferrioxamine). During ascent, there were reductions in iron status in both lowlanders and Sherpa; however, Sherpa appeared to demonstrate a more efficient capacity to mobilize stored iron, compared to lowlanders, when expressed as a Δhepcidin per unit change in either body iron or the soluble transferrin receptor index, between 3400-5050 m (P = 0.016 and P = 0.029, respectively). The rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders during ascent; however, PASP was comparable in both groups upon arrival to 5050 m. Following partial acclimatization, despite Sherpa demonstrating a blunted hypoxic ventilatory response and greater resting hypoxaemia, they had similar hypoxic pulmonary vasoconstriction when compared to lowlanders at rest. Iron-infusion attenuated PASP in both groups at rest (P = 0.005), while chelation did not exaggerate PASP in either group at rest or during exaggerated hypoxaemia ( PIO2  = 67 mmHg). During exercise at 25% peak wattage, PASP was only consistently elevated in Sherpa, which persisted following both iron infusion or chelation. These findings provide new evidence on the complex interplay of iron regulation on pulmonary vascular regulation during acclimatization and adaptation to high altitude.


Assuntos
Altitude , Vasoconstrição , Aclimatação , Humanos , Hipóxia , Ferro
8.
Am J Physiol Heart Circ Physiol ; 321(4): H738-H747, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448634

RESUMO

Hemoconcentration can influence hypoxic pulmonary vasoconstriction (HPV) via increased frictional force and vasoactive signaling from erythrocytes, but whether the balance of these mechanism is modified by the duration of hypoxia remains to be determined. We performed three sequential studies: 1) at sea level, in normoxia and isocapnic hypoxia with and without isovolumic hemodilution (n = 10, aged 29 ± 7 yr); 2) at altitude (6 ± 2 days acclimatization at 5,050 m), before and during hypervolumic hemodilution (n = 11, aged 27 ± 5 yr) with room air and additional hypoxia [fraction of inspired oxygen ([Formula: see text])= 0.15]; and 3) at altitude (4,340 m) in Andean high-altitude natives with excessive erythrocytosis (EE; n = 6, aged 39 ± 17 yr), before and during isovolumic hemodilution with room air and hyperoxia (end-tidal Po2 = 100 mmHg). At sea level, hemodilution mildly increased pulmonary artery systolic pressure (PASP; +1.6 ± 1.5 mmHg, P = 0.01) and pulmonary vascular resistance (PVR; +0.7 ± 0.8 wu, P = 0.04). In contrast, after acclimation to 5,050 m, hemodilution did not significantly alter PASP (22.7 ± 5.2 vs. 24.5 ± 5.2 mmHg, P = 0.14) or PVR (2.2 ± 0.9 vs. 2.3 ± 1.2 wu, P = 0.77), although both remained sensitive to additional acute hypoxia. In Andeans with EE at 4,340 m, hemodilution lowered PVR in room air (2.9 ± 0.9 vs. 2.3 ± 0.8 wu, P = 0.03), but PASP remained unchanged (31.3 ± 6.7 vs. 30.9 ± 6.9 mmHg, P = 0.80) due to an increase in cardiac output. Collectively, our series of studies reveal that HPV is modified by the duration of exposure and the prevailing hematocrit level. In application, these findings emphasize the importance of accounting for hematocrit and duration of exposure when interpreting the pulmonary vascular responses to hypoxemia.NEW & NOTEWORTHY Red blood cell concentration influences the pulmonary vasculature via direct frictional force and vasoactive signaling, but whether the magnitude of the response is modified with duration of exposure is not known. By assessing the pulmonary vascular response to hemodilution in acute normobaric and prolonged hypobaric hypoxia in lowlanders and lifelong hypobaric hypoxemia in Andean natives, we demonstrated that a reduction in red cell concentration augments the vasoconstrictive effects of hypoxia in lowlanders. In high-altitude natives, hemodilution lowered pulmonary vascular resistance, but a compensatory increase in cardiac output following hemodilution rendered PASP unchanged.


Assuntos
Aclimatação , Altitude , Pressão Arterial , Eritrócitos/metabolismo , Hemodiluição , Hipóxia/sangue , Policitemia/sangue , Artéria Pulmonar/fisiopatologia , Vasoconstrição , Adulto , Viscosidade Sanguínea , Débito Cardíaco , Frequência Cardíaca , Hematócrito , Humanos , Hipóxia/diagnóstico , Hipóxia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Policitemia/diagnóstico , Policitemia/fisiopatologia , Fatores de Tempo , Resistência Vascular , Adulto Jovem
9.
Exp Physiol ; 106(1): 86-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32237245

RESUMO

NEW FINDINGS: What is the central question of this study? Herein, a methodological overview of our research team's (Global REACH) latest high altitude research expedition to Peru is provided. What is the main finding and its importance? The experimental objectives, expedition organization, measurements and key cohort data are discussed. The select data presented in this manuscript demonstrate the haematological differences between lowlanders and Andeans with and without excessive erythrocytosis. The data also demonstrate that exercise capacity was similar between study groups at high altitude. The forthcoming findings from our research expedition will contribute to our understanding of lowlander and indigenous highlander high altitude adaptation. ABSTRACT: In 2016, the international research team Global Research Expedition on Altitude Related Chronic Health (Global REACH) was established and executed a high altitude research expedition to Nepal. The team consists of ∼45 students, principal investigators and physicians with the common objective of conducting experiments focused on high altitude adaptation in lowlanders and in highlanders with lifelong exposure to high altitude. In 2018, Global REACH travelled to Peru, where we performed a series of experiments in the Andean highlanders. The experimental objectives, organization and characteristics, and key cohort data from Global REACH's latest research expedition are outlined herein. Fifteen major studies are described that aimed to elucidate the physiological differences in high altitude acclimatization between lowlanders (n = 30) and Andean-born highlanders with (n = 22) and without (n = 45) excessive erythrocytosis. After baseline testing in Kelowna, BC, Canada (344 m), Global REACH travelled to Lima, Peru (∼80 m) and then ascended by automobile to Cerro de Pasco, Peru (∼4300 m), where experiments were conducted over 25 days. The core studies focused on elucidating the mechanism(s) governing cerebral and peripheral vascular function, cardiopulmonary regulation, exercise performance and autonomic control. Despite encountering serious logistical challenges, each of the proposed studies was completed at both sea level and high altitude, amounting to ∼780 study sessions and >3000 h of experimental testing. Participant demographics and data relating to acid-base balance and exercise capacity are presented. The collective findings will contribute to our understanding of how lowlanders and Andean highlanders have adapted under high altitude stress.


Assuntos
Adaptação Fisiológica/fisiologia , Doença da Altitude/fisiopatologia , Coração/fisiopatologia , Hipóxia/fisiopatologia , Adulto , Altitude , Doença Crônica , Estudos de Coortes , Expedições , Humanos , Masculino , Peru
10.
J Physiol ; 598(19): 4225-4236, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32639605

RESUMO

KEY POINTS: Changes in haematocrit influence nitric oxide signalling through alterations in shear stress stimuli and haemoglobin scavenging of nitric oxide; these two regulatory factors have not been assessed simultaneously Isovolumic haemodilution led to a marked increase in brachial artery flow-mediated dilatation in humans The increase in flow-mediated dilatation occurred in the face of an unaltered shear stress stimulus for vasodilatation and reduced resting steady-state nitric oxide levels in the blood Collectively, our data point towards haemoglobin scavenging of nitric oxide as a key regulatory factor of brachial flow-mediated dilatation and highlight the importance of the simultaneous consideration of nitric oxide production and inactivation when investigating vascular function in humans ABSTRACT: Haemoglobin (Hb) may impact the transduction of endothelium-dependent and nitric oxide (NO)-mediated vasodilator activity, given its contribution to shear stress stimuli and diverse biochemical reactions with NO. We hypothesized that an acute reduction in [Hb] and haematocrit (Hct) would increase brachial artery flow-mediated dilatation (FMD). In 11 healthy males (28 ± 7 years; 23 ± 2 kg m-2 ), FMD (Duplex ultrasound), arterial blood gases, Hct and [Hb], blood viscosity, and NO metabolites (ozone-based chemiluminescence) were measured before and after isovolumic haemodilution, where ∼20% of whole blood was removed and replaced with 5% human serum albumin. Haemodilution reduced Hct by 18 ± 2% (P < 0.001) and whole blood viscosity by 22 ± 5% (P < 0.001). Plasma nitrite (P = 0.01), S-nitrosothiols (P = 0.03) and total red blood cell NO (P = 0.001) were collectively reduced by ∼15-40%. Brachial artery FMD increased by ∼160% from 3.8 ± 2.1 to 9.7 ± 4.5% (P = 0.004). Statistical covariation for the shear stress stimulus did not alter FMD, indicating that the increase in FMD was not directly related to alterations in whole blood viscosity and the shear stimulus. Collectively, these findings indicate that haemoglobin scavenging of NO appears to be an important factor in the regulation of FMD under normal conditions through constraint of endothelium-dependent NO-mediated vasodilatation in healthy humans.


Assuntos
Endotélio Vascular , Óxido Nítrico , Disponibilidade Biológica , Artéria Braquial/diagnóstico por imagem , Dilatação , Hematócrito , Humanos , Masculino , Fluxo Sanguíneo Regional , Vasodilatação
11.
J Physiol ; 598(21): 4927-4939, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32785972

RESUMO

KEY POINTS: Preclinical models have demonstrated that nitric oxide is a key component of neurovascular coupling; this has yet to be translated to humans. We conducted two separate protocols utilizing intravenous infusion of a nitric oxide synthase inhibitor and isovolumic haemodilution to assess the influence of nitric oxide on neurovascular coupling in humans. Isovolumic haemodilution did not alter neurovascular coupling. Intravenous infusion of a nitric oxide synthase inhibitor reduced the neurovascular coupling response by ∼30%, indicating that nitric oxide is integral to neurovascular coupling in humans. ABSTRACT: Nitric oxide is a vital neurovascular signalling molecule in preclinical models, yet the mechanisms underlying neurovascular coupling (NVC) in humans have yet to be elucidated. To investigate the contribution of nitric oxide to NVC in humans, we utilized a visual stimulus paradigm to elicit an NVC response in the posterior cerebral circulation. Two distinct mechanistic interventions were conducted on young healthy males: (1) NVC was assessed during intravenous infusion of saline (placebo) and the non-selective competitive nitric oxide synthase inhibitor NG -monomethyl-l-arginine (l-NMMA, 5 mg kg-1 bolus & subsequent 50 µg kg-1 min-1 maintenance dose; n = 10). The order of infusion was randomized, counterbalanced and single blinded. A subset of participants in this study (n = 4) underwent a separate intervention with phenylephrine infusion to independently consider the influence of blood pressure changes on NVC (0.1-0.6 µg kg-1 min-1 constant infusion). (2) NVC was assessed prior to and following isovolumic haemodilution, whereby 20% of whole blood was removed and replaced with 5% human serum albumin to reduce haemoglobin concentration (n = 8). For both protocols, arterial and internal jugular venous blood samples were collected at rest and coupled with volumetric measures of cerebral blood flow (duplex ultrasound) to quantify resting cerebral metabolic parameters. l-NMMA elicited a 30% reduction in the peak (P = 0.01), but not average (P = 0.11), NVC response. Neither phenylephrine nor haemodilution influenced NVC. Nitric oxide signalling is integral to NVC in humans, providing a new direction for research into pharmacological treatment of humans with dementia.


Assuntos
Acoplamento Neurovascular , Óxido Nítrico , Circulação Cerebrovascular , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , ômega-N-Metilarginina/farmacologia
12.
J Physiol ; 597(12): 2993-3008, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31026348

RESUMO

KEY POINTS: Sherpa have lived in the Nepal Himalaya for 25-40 thousand years and display positive physiological adaptations to hypoxia. Sherpa have previously been demonstrated to suffer less negative cerebral side effects of ascent to extreme altitude, yet little is known as to whether or not they display differential regulation of oxygen delivery to the brain compared to lowland natives. We demonstrate that Sherpa have lower brain blood flow during ascent to and acclimatization at high altitude compared to lowlanders and that this difference in flow is not attributable to factors such as mean arterial pressure, blood viscosity and pH. The observed lower cerebral oxygen delivery in Sherpa likely represents a positive adaptation that may indicate a cerebral hypometabolic conservation of energy at altitude and/or decreased risk of other cerebral consequences such as vasogenic oedema. ABSTRACT: Debilitating side effects of hypoxia manifest within the central nervous system; however, high-altitude natives of the Tibetan plateau, the Sherpa, experience negligible cerebral effects compared to lowland natives at extreme altitude. Phenotypical optimization of the oxygen cascade has been demonstrated in the systemic circulation of Tibetans and Sherpa, likely underscoring their adapted capacity to thrive at altitude. Yet, little is known as to how the cerebral circulation of Sherpa may be adapted. To examine potential differences in cerebral oxygen delivery in Sherpa compared to lowlanders we measured arterial blood gases and global cerebral blood flow (duplex ultrasound) during a 9 day ascent to 5050 m. Although cerebral oxygen delivery was maintained during ascent in lowlanders, it was significantly reduced in the Sherpa at 3400 m (-30.3 ± 21.6%; P < 0.01) and 4371 m (-14.2 ± 10.7%; P = 0.03). Furthermore, linear mixed effects modelling indicated that independent of differences in mean arterial pressure, pH and blood viscosity, race accounts for an approximately 100 mL min-1 (∼17-34%) lower cerebral blood flow in Sherpa compared to lowlanders across ascent to altitude (P = 0.046). To ascertain the role of chronic hypoxia independent of the ascent, Sherpa who had not recently descended were also examined at 5050 m. In these Sherpa, cerebral oxygen delivery was also lower compared to lowlanders (∼22% lower; P < 0.01). We highlight new information about the influence of race and genetic adaptation in the regulation of cerebral oxygen delivery. The lower cerebral oxygen delivery in the Sherpa potentially represents a positive adaptation considering Sherpa endure less deleterious cerebral consequences than lowlanders at altitude.


Assuntos
Aclimatação/fisiologia , Altitude , Circulação Cerebrovascular , Hipóxia/fisiopatologia , Adulto , Encéfalo/irrigação sanguínea , Expedições , Feminino , Humanos , Hipóxia/etnologia , Masculino , Pessoa de Meia-Idade , Nepal , Oxigênio/fisiologia , Fenótipo , Grupos Raciais , Adulto Jovem
13.
FASEB J ; 32(4): 2305-2314, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29191963

RESUMO

Static apnea provides a unique model that combines transient hypertension, hypercapnia, and severe hypoxemia. With apnea durations exceeding 5 min, the purpose of the present study was to determine how that affects cerebral free-radical formation and the corresponding implications for brain structure and function. Measurements were obtained before and following a maximal apnea in 14 divers with transcerebral exchange kinetics, measured as the product of global cerebral blood flow (duplex ultrasound) and radial arterial to internal jugular venous concentration differences ( a-vD). Apnea increased the systemic (arterial) and, to a greater extent, the regional (jugular venous) concentration of the ascorbate free radical, resulting in a shift from net cerebral uptake to output ( P < 0.05). Peroxidation (lipid hydroperoxides, LDL oxidation), NO bioactivity, and S100ß were correspondingly enhanced ( P < 0.05), the latter interpreted as minor and not a pathologic disruption of the blood-brain barrier. However, those changes were insufficient to cause neuronal-parenchymal damage confirmed by the lack of change in the a-vD of neuron-specific enolase and human myelin basic protein ( P > 0.05). Collectively, these observations suggest that increased cerebral oxidative stress following prolonged apnea in trained divers may reflect a functional physiologic response, rather than a purely maladaptive phenomenon.-Bain, A. R., Ainslie, P. N., Hoiland, R. L., Barak, O. F., Drvis, I., Stembridge, M., MacLeod, D. M., McEneny, J., Stacey, B. S., Tuaillon, E., Marchi, N., De Maudave, A. F., Dujic, Z., MacLeod, D. B., Bailey, D. M. Competitive apnea and its effect on the human brain: focus on the redox regulation of blood-brain barrier permeability and neuronal-parenchymal integrity.


Assuntos
Apneia/metabolismo , Barreira Hematoencefálica/metabolismo , Estresse Oxidativo , Adulto , Apneia/sangue , Permeabilidade Capilar , Circulação Cerebrovascular , Feminino , Radicais Livres/metabolismo , Humanos , Peroxidação de Lipídeos , Masculino , Proteína Básica da Mielina/metabolismo , Fosfopiruvato Hidratase/metabolismo
14.
Exp Physiol ; 104(12): 1963-1972, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31410899

RESUMO

NEW FINDINGS: What is the central question of this study? The aim was to evaluate the degree to which increases in haematocrit alter cerebral blood flow and cerebral oxygen delivery during acclimatization to high altitude. What is the main finding and its importance? Through haemodilution, we determined that, after 1 week of acclimatization, the primary mechanism contributing to the cerebral blood flow response during acclimatization is an increase in haemoglobin and haematocrit. The remaining contribution to the cerebral blood flow response during acclimatization is likely to be attributable to ventilatory acclimatization. ABSTRACT: At high altitude, an increase in haematocrit (Hct) is achieved through altitude-induced diuresis and erythropoiesis, both of which result in increased arterial oxygen content. Given the impact of alterations in Hct on oxygen content, haemoconcentration has been hypothesized to mediate, in part, the attenuation of the initial elevation in cerebral blood flow (CBF) at high altitude. To test this hypothesis, healthy men (n = 13) ascended to 5050 m over 9 days without the aid of prophylactic acclimatization medications. After 1 week of acclimatization at 5050 m, participants were haemodiluted by rapid saline infusion (2.10 ± 0.28 l) to return Hct towards pre-acclimatization values. Arterial blood gases, Hct, global CBF (duplex ultrasound) and haemodynamic variables were measured after initial arrival at 5050 m and after 1 week of acclimatization at high altitude, before and after the haemodilution protocol. After 1 week at 5050 m, the Hct increased from 42.5 ± 2.5 to 49.6 ± 2.5% (P < 0.001), and it was subsequently reduced to 45.6 ± 2.3% (P < 0.001) after haemodilution. Global CBF decreased from 844 ± 160 to 619 ± 136 ml min-1 (P = 0.033) after 1 week of acclimatization and increased to 714 ± 204 ml min -1 (P = 0.045) after haemodilution. Despite the significant changes in Hct, and thus oxygen content, cerebral oxygen delivery was unchanged at all time points. Furthermore, these observations occurred in the absence of any changes in mean arterial blood pressure, cardiac output, arterial blood pH or oxygen saturation pre- and posthaemodilution. These data highlight the influence of Hct in the regulation of CBF and are the first to demonstrate experimentally that haemoconcentration contributes to the reduction in CBF during acclimatization to altitude.


Assuntos
Aclimatação/fisiologia , Altitude , Circulação Cerebrovascular/fisiologia , Expedições , Hematócrito/métodos , Adulto , Volume Sanguíneo/fisiologia , Humanos , Masculino , Nepal
15.
Am J Physiol Heart Circ Physiol ; 315(6): H1532-H1543, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30168724

RESUMO

The study of conduit artery endothelial adaptation to hypoxia has been restricted to the brachial artery, and comparisons with highlanders have been confounded by differences in altitude exposure, exercise, and unknown levels of blood viscosity. To address these gaps, we tested the hypothesis that lowlanders, but not Sherpa, would demonstrate decreased mean shear stress and increased retrograde shear stress and subsequently reduced flow-mediated dilation (FMD) in the upper and lower limb conduit arteries on ascent to 5,050 m. Healthy lowlanders (means ± SD, n = 22, 28 ± 6 yr) and Sherpa ( n = 12, 34 ± 11 yr) ascended over 10 days, with measurements taken on nontrekking days at 1,400 m (baseline), 3,440 m ( day 4), 4,371 m ( day 7), and 5,050 m ( day 10). Arterial blood gases, blood viscosity, shear stress, and FMD [duplex ultrasound of the brachial and superficial femoral arteries (BA and SFA, respectively)] were acquired at each time point. Ascent decreased mean and increased retrograde shear stress in the upper and lower limb of lowlanders and Sherpa. Although BA FMD decreased in lowlanders from 7.1 ± 3.9% to 3.8 ± 2.8% at 5,050 versus 1,400 m ( P < 0.001), SFA FMD was preserved. In Sherpa, neither BA nor SFA FMD were changed upon ascent to 5,050 m. In lowlanders, the ascent-related exercise may favorably influence endothelial function in the active limb (SFA); selective impairment in FMD in the BA in lowlanders is likely mediated via the low mean or high oscillatory baseline shear stress. In contrast, Sherpa presented protected endothelial function, suggesting a potential vascular aspect of high-altitude acclimatization/adaptation. NEW & NOTEWORTHY Upper and lower limb arterial shear stress and flow-mediated dilation (FMD) were assessed on matched ascent from 1,400 to 5,050 m in lowlanders and Sherpa. A shear stress pattern associated with vascular dysfunction/risk manifested in both limbs of lowlanders and Sherpa. FMD was impaired only in the upper limb of lowlanders. The findings indicate a limb-specific impact of high-altitude trekking on FMD and a vascular basis to acclimatization wherein endothelial function is protected in Sherpa on ascent.


Assuntos
Doença da Altitude/fisiopatologia , Extremidades/irrigação sanguínea , Fluxo Sanguíneo Regional , Vasodilatação , Adaptação Fisiológica , Adulto , Artérias/fisiologia , Expedições , Feminino , Humanos , Masculino
16.
Exp Physiol ; 103(5): 635-651, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29512224

RESUMO

NEW FINDINGS: What is the topic of this review? This review provides an up-to-date assessment of the physiology involved with extreme static dry-land breath holding in trained apneists. What advances does it highlight? We specifically highlight the recent findings involved with the cardiovascular, cerebrovascular and metabolic function during a maximal breath hold in elite apneists. ABSTRACT: Breath-hold-related activities have been performed for centuries, but only recently, within the last ∼30 years, has it emerged as an increasingly popular competitive sport. In apnoea sport, competition relates to underwater distances or simply maximal breath-hold duration, with the current (oxygen-unsupplemented) static breath-hold record at 11 min 35 s. Remarkably, many ultra-elite apneists are able to suppress respiratory urges to the point where consciousness fundamentally limits a breath-hold duration. Here, arterial oxygen saturations as low as ∼50% have been reported. In such cases, oxygen conservation to maintain cerebral functioning is critical, where responses ascribed to the mammalian dive reflex, e.g. sympathetically mediated peripheral vasoconstriction and vagally mediated bradycardia, are central. In defence of maintaining global cerebral oxygen delivery during prolonged breath holds, the cerebral blood flow may increase by ∼100% from resting values. Interestingly, near the termination of prolonged dry static breath holds, recent studies also indicate that reductions in the cerebral oxidative metabolism can occur, probably attributable to the extreme hypercapnia and irrespective of the hypoxaemia. In this review, we highlight and discuss the recent data on the cardiovascular, metabolic and, particularly, cerebrovascular function in competitive apneists performing maximal static breath holds. The physiological adaptation and maladaptation with regular breath-hold training are also summarized, and future research areas in this unique physiological field are highlighted; particularly, the need to determine the potential long-term health impacts of extreme breath holding.


Assuntos
Apneia/fisiopatologia , Suspensão da Respiração , Adaptação Fisiológica/fisiologia , Animais , Circulação Cerebrovascular/fisiologia , Humanos , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia
17.
Exp Physiol ; 102(10): 1288-1299, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28762565

RESUMO

NEW FINDINGS: What is the central question of this study? Does the reduction in cardiac output observed during extreme voluntary apnoea, secondary to high lung volume, result in a reduction in cerebral blood flow, perfusion pressure and oxygen delivery in a group of elite free divers? What is the main finding and its importance? High lung volumes reduce cardiac output and ventricular filling during extreme apnoea, but changes in cerebral blood flow are observed only transiently during the early stages of apnoea. This reveals that whilst cardiac output is important in regulating cerebral haemodynamics, the role of mean arterial pressure in restoring cerebral perfusion pressure is of greater significance to the regulation of cerebral blood flow. We investigated the role of lung volume-induced changes in cardiac output (Q̇) on cerebrovascular regulation during prolonged apnoea. Fifteen elite apnoea divers (one female; 185 ± 7 cm, 82 ± 12 kg, 29 ± 7 years old) attended the laboratory on two separate occasions and completed maximal breath-holds at total lung capacity (TLC) and functional residual capacity (FRC) to elicit disparate cardiovascular responses. Mean arterial pressure (MAP), internal jugular venous pressure and arterial blood gases were measured via cannulation. Global cerebral blood flow was quantified by ultrasound and cardiac output was quantified by via photoplethysmography. At FRC, stroke volume and Q̇ did not change from baseline (P > 0.05). In contrast, during the TLC trial stroke volume and Q̇ were decreased until 80 and 40% of apnoea, respectively (P < 0.05). During the TLC trial, global cerebral blood flow was significantly lower at 20%, but subsequently increased so that cerebral oxygen delivery was comparable to that during the FRC trial. Internal jugular venous pressure was significantly higher throughout the TLC trial in comparison to FRC. The MAP increased progressively in both trials but to a greater extent at TLC, resulting in a comparable cerebral perfusion pressure between trials by the end of apnoea. In summary, although lung volume has a profound effect on Q̇ during prolonged breath-holding, these changes do not translate to the cerebrovasculature owing to the greater sensitivity of cerebral blood flow to arterial blood gases and MAP; regulatory mechanisms that facilitate the maintenance of cerebral oxygen delivery.


Assuntos
Apneia/fisiopatologia , Débito Cardíaco/fisiologia , Circulação Cerebrovascular/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Adulto , Apneia/metabolismo , Pressão Arterial/fisiologia , Gasometria/métodos , Suspensão da Respiração , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Mergulho/fisiologia , Feminino , Hemodinâmica/fisiologia , Humanos , Masculino , Oxigênio/metabolismo , Volume Sistólico/fisiologia
18.
Anesth Analg ; 124(1): 146-153, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27529318

RESUMO

Extended periods of oxygen deprivation can produce acidosis, inflammation, energy failure, cell stress, or cell death. However, brief profound hypoxia (here defined as SaO2 50%-70% for approximately 10 minutes) is not associated with cardiovascular compromise and is tolerated by healthy humans without apparent ill effects. In contrast, chronic hypoxia induces a suite of adaptations and stresses that can result in either increased tolerance of hypoxia or disease, as in adaptation to altitude or in the syndrome of chronic mountain sickness. In healthy humans, brief profound hypoxia produces increased minute ventilation and increased cardiac output, but little or no alteration in blood chemistry. Central nervous system effects of acute profound hypoxia include transiently decreased cognitive performance, based on alterations in attention brought about by interruptions of frontal/central cerebral connectivity. However, provided there is no decrease in cardiac output or ischemia, brief profound hypoxemia in healthy humans is well tolerated without evidence of acidosis or lasting cognitive impairment.


Assuntos
Hipóxia/diagnóstico , Oximetria , Oxigênio/sangue , Acidose/etiologia , Acidose/fisiopatologia , Doença Aguda , Adaptação Fisiológica , Animais , Atenção , Biomarcadores/sangue , Encéfalo/fisiopatologia , Débito Cardíaco , Cognição , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/psicologia , Modelos Animais de Doenças , Humanos , Hipóxia/sangue , Hipóxia/complicações , Hipóxia/fisiopatologia , Valor Preditivo dos Testes , Ventilação Pulmonar , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo
19.
J Physiol ; 594(18): 5317-28, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27256521

RESUMO

KEY POINTS: The present study describes the cerebral oxidative and non-oxidative metabolism in man during a prolonged apnoea (ranging from 3 min 36 s to 7 min 26 s) that generates extremely low levels of blood oxygen and high levels of carbon dioxide. The cerebral oxidative metabolism, measured from the product of cerebral blood flow and the radial artery-jugular venous oxygen content difference, was reduced by ∼29% at the termination of apnoea, although there was no change in the non-oxidative metabolism. A subset study with mild and severe hypercapnic breathing at the same level of hypoxia suggests that hypercapnia can partly explain the cerebral metabolic reduction near the apnoea breakpoint. A hypercapnia-induced oxygen-conserving response may protect the brain against severe oxygen deprivation associated with prolonged apnoea. ABSTRACT: Prolonged apnoea in humans is reflected in progressive hypoxaemia and hypercapnia. In the present study, we explore the cerebral metabolic responses under extreme hypoxia and hypercapnia associated with prolonged apnoea. We hypothesized that the cerebral metabolic rate for oxygen (CMRO2 ) will be reduced near the termination of apnoea, attributed in part to the hypercapnia. Fourteen elite apnoea-divers performed a maximal apnoea (range 3 min 36 s to 7 min 26 s) under dry laboratory conditions. In a subset study with the same divers, the impact of hypercapnia on cerebral metabolism was determined using varying levels of hypercapnic breathing, against the background of similar hypoxia. In both studies, the CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-internal jugular venous oxygen content difference. Non-oxidative cerebral metabolism was calculated from the ratio of oxygen and carbohydrate (lactate and glucose) metabolism. The CMRO2  was reduced by ∼29% (P < 0.01, Cohen's d = 1.18) near the termination of apnoea compared to baseline, although non-oxidative metabolism remained unaltered. In the subset study, in similar backgrounds of hypoxia (arterial O2 tension: ∼38.4 mmHg), severe hypercapnia (arterial CO2 tension: ∼58.7 mmHg), but not mild-hypercapnia (arterial CO2 tension: ∼46.3 mmHg), depressed the CMRO2 (∼17%, P = 0.04, Cohen's d = 0.87). Similarly to the apnoea, there was no change in the non-oxidative metabolism. These data indicate that hypercapnia can partly explain the reduction in CMRO2 near the apnoea breakpoint. This hypercapnic-induced oxygen conservation may protect the brain against severe hypoxaemia associated with prolonged apnoea.


Assuntos
Apneia/fisiopatologia , Encéfalo/fisiologia , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Consumo de Oxigênio , Adulto , Apneia/sangue , Pressão Arterial , Velocidade do Fluxo Sanguíneo , Gasometria , Circulação Cerebrovascular , Epinefrina/sangue , Feminino , Frequência Cardíaca , Humanos , Hipercapnia/sangue , Hipóxia/sangue , Norepinefrina/sangue , Pressão Venosa , Adulto Jovem
20.
Pain Med ; 17(1): 149-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26177330

RESUMO

OBJECTIVE: To define clinical phenotypes of postamputation pain and identify markers of risk for the development of chronic pain. DESIGN: Cross-sectional study of military service members enrolled 3-18 months after traumatic amputation injury. SETTING: Military Medical Center. SUBJECTS: 124 recent active duty military service members. METHODS: Study subjects completed multiple pain and psychometric questionnaires to assess the qualities of phantom and residual limb pain. Medical records were reviewed to determine the presence/absence of a regional catheter near the time of injury. Subtypes of residual limb pain (somatic, neuroma, and complex regional pain syndrome) were additionally analyzed and associated with clinical risk factors. RESULTS: A majority of enrolled patients (64.5%) reported clinically significant pain (pain score ≥ 3 averaged over previous week). 61% experienced residual limb pain and 58% experienced phantom pain. When analysis of pain subtypes was performed in those with residual limb pain, we found evidence of a sensitized neuroma in 48.7%, somatic pain in 40.8%, and complex regional pain syndrome in 19.7% of individuals. The presence of clinically significant neuropathic residual limb pain was associated with symptoms of PTSD and depression. Neuropathic pain of any severity was associated with symptoms of all four assessed clinical risk factors: depression, PTSD, catastrophizing, and the absence of regional analgesia catheter. CONCLUSIONS: Most military service members in this cohort suffered both phantom and residual limb pain following amputation. Neuroma was a common cause of neuropathic pain in this group. Associated risk factors for significant neuropathic pain included PTSD and depression. PTSD, depression, catastrophizing, and the absence of a regional analgesia catheter were associated with neuropathic pain of any severity.


Assuntos
Amputação Traumática/fisiopatologia , Medição da Dor , Membro Fantasma/diagnóstico , Adulto , Amputação Cirúrgica/métodos , Amputação Traumática/diagnóstico , Amputação Traumática/psicologia , Amputação Traumática/terapia , Analgesia/efeitos adversos , Estudos Transversais , Depressão/psicologia , Feminino , Humanos , Masculino , Neuroma/complicações , Neuroma/terapia , Membro Fantasma/psicologia , Membro Fantasma/terapia , Fatores de Risco , Inquéritos e Questionários , Veteranos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA