Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Sci Technol ; 49(11): 6419-29, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26000896

RESUMO

Exposure to submicron particles (PM1) is of interest due to their possible chronic and acute health effects. Seven consecutive 24-h PM1 samples were collected during winter and summer 2010 in a total of 74 nonsmoking homes in Edmonton, Canada. Median winter concentrations of PM1 were 2.2 µg/m(3) (interquartile range, IQR = 0.8-6.1 µg/m(3)) and 3.3 µg/m(3) (IQR = 1.5-6.9 µg/m(3)) for indoors and outdoors, respectively. In the summer, indoor (median 4.4 µg/m(3), IQR = 2.4-8.6 µg/m(3)) and outdoor (median 4.3 µg/m(3), IQR = 2.6-7.4 µg/m(3)) levels were similar. Positive matrix factorization (PMF) was applied to identify and apportion indoor and outdoor sources of elements in PM1 mass. Nine sources contributing to both indoor and outdoor PM1 concentrations were identified including secondary sulfate, soil, biomass smoke and environmental tobacco smoke (ETS), traffic, settled and mixed dust, coal combustion, road salt/road dust, and urban mixture. Three additional indoor sources were identified i.e., carpet dust, copper-rich, and silver-rich. Secondary sulfate, soil, biomass smoke and ETS contributed more than 70% (indoors: 0.29 µg/m(3), outdoors: 0.39 µg/m(3)) of measured elemental mass in PM1. These findings can aid understanding of relationships between submicron particles and health outcomes for indoor/outdoor sources.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Alberta , Poeira , Humanos , Veículos Automotores , Estações do Ano , Sulfatos/análise , Poluição por Fumaça de Tabaco/análise
2.
Environ Sci Technol ; 48(20): 12157-63, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25247985

RESUMO

Residential wood combustion is an important source of ambient air pollution, accounting for over 25% of fine particulate matter (PM2.5) emissions in Canada. In addition to these ambient contributions, wood smoke pollutants can enter the indoor environment directly when loading or stoking stoves, resulting in a high potential for human exposure. A study of the effectiveness of air cleaners at reducing wood smoke-associated PM2.5 of indoor and outdoor origin was conducted in 31 homes during winter 2009-10. Day 1, the residents' wood burning appliance operated as usual with no air cleaner. Days 2 and 3, the wood burning appliance was not operational and the air cleaner was randomly chosen to operate in "filtration" or "placebo filtration" mode. When the air cleaner was operating, total indoor PM2.5 levels were significantly lower than on placebo filtration days (p = 0.0001) resulting in a median reduction of 52%. There was also a reduction in the median PM2.5 infiltration factor from 0.56 to 0.26 between these 2 days, suggesting the air cleaner was responsible for increased PM2.5 deposition on filtration days. Our findings suggest that the use of an air cleaner reduces exposure to indoor PM2.5 resulting from both indoor and ambient wood smoke sources.


Assuntos
Filtros de Ar/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/análise , Fumaça/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Canadá , Filtração/instrumentação , Glucose/análogos & derivados , Glucose/análise , Habitação/estatística & dados numéricos , Humanos , Material Particulado/análise , Estações do Ano , Poluição por Fumaça de Tabaco , Madeira/química
3.
Environ Sci Technol ; 47(22): 12929-37, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24143863

RESUMO

Human exposure to particles depends on particle loss mechanisms such as deposition and filtration. Fine and ultrafine particles (FP and UFP) were measured continuously over seven consecutive days during summer and winter inside 74 homes in Edmonton, Canada. Daily average air exchange rates were also measured. FP were also measured outside each home and both FP and UFP were measured at a central monitoring station. A censoring algorithm was developed to identify indoor-generated concentrations, with the remainder representing particles infiltrating from outdoors. The resulting infiltration factors were employed to determine the continuously changing background of outdoor particles infiltrating the homes. Background-corrected indoor concentrations were then used to determine rates of removal of FP and UFP following peaks due to indoor sources. About 300 FP peaks and 400 UFP peaks had high-quality (median R(2) value >98%) exponential decay rates lasting from 30 min to 10 h. Median (interquartile range (IQR)) decay rates for UFP were 1.26 (0.82-1.83) h(-1); for FP 1.08 (0.62-1.75) h(-1). These total decay rates included, on average, about a 25% contribution from air exchange, suggesting that deposition and filtration accounted for the major portion of particle loss mechanisms in these homes. Models presented here identify and quantify effects of several factors on total decay rates, such as window opening behavior, home age, use of central furnace fans and kitchen and bathroom exhaust fans, use of air cleaners, use of air conditioners, and indoor-outdoor temperature differences. These findings will help identify ways to reduce exposure and risk.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar em Ambientes Fechados/análise , Tamanho da Partícula , Material Particulado/química , Ar , Canadá , Humanos , Modelos Teóricos , Estações do Ano , Inquéritos e Questionários , Emissões de Veículos/análise
4.
J Air Waste Manag Assoc ; 61(2): 142-56, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21387932

RESUMO

The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM < or = 2.5 microm [PM2.5] and < or = 10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Adolescente , Adulto , Asma/epidemiologia , Criança , Monitoramento Epidemiológico , Feminino , Nível de Saúde , Humanos , Masculino , Dióxido de Nitrogênio/análise , Ontário/epidemiologia , Ozônio/análise , Inquéritos e Questionários , Compostos Orgânicos Voláteis/análise
5.
J Air Waste Manag Assoc ; 61(3): 324-38, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21416760

RESUMO

The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM-2.5 pm [PM2.5] and < or =10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Adulto , Asma/fisiopatologia , Criança , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/análise , Ontário , Ozônio/análise , Material Particulado/análise , Seleção de Pacientes , Controle de Qualidade , Projetos de Pesquisa , Inquéritos e Questionários , Capacidade Vital , Compostos Orgânicos Voláteis/análise
6.
Health Promot Chronic Dis Prev Can ; 41(1): 25-29, 2021 01.
Artigo em Inglês, Francês | MEDLINE | ID: mdl-33438943

RESUMO

Little is known about the use or misuse of cleaning products during the COVID-19 pandemic. We compiled data from January to June in 2019 and 2020 from Canadian poison centres, and report on calls regarding selected cleaning products and present year-overyear percentage change. There were 3408 (42%) calls related to bleaches; 2015 (25%) to hand sanitizers; 1667 (21%) to disinfectants; 949 (12%) to chlorine gas; and 148 (2%) to chloramine gas. An increase in calls occurred in conjunction with the onset of COVID-19, with the largest increase occurring in March. Timely access to Canadian poison centre data facilitated early communication of safety messaging for dissemination to the public.


The Canadian Surveillance System for Poison Information (CSSPI) led by Health Canada is a developing network of poison centres, health authorities and regulatory agencies that facilitates early detection of poisoning incidents and alerting at the national level to inform harm reduction interventions. In response to the COVID-19 pandemic, concerns were raised over the potential for misuse of cleaning products and disinfectants; the CSSPI network monitored and assessed these concerns. An overall increase in calls about select cleaning products and disinfectants occurred concurrently with the pandemic, with percentage increases for selected products as high as 400% compared to the same period in the previous year.


Le Système canadien de surveillance des données sur les intoxications (SCSDI), dirigé par Santé Canada, est un réseau en développement composé de centres antipoison, d'autorités sanitaires et d'organismes de réglementation, qui facilite la détection précoce des incidents d'empoisonnement et une alerte rapide au niveau national afin d'éclairer les interventions en matière de réduction des risques. En réponse à la pandémie de COVID-19, des préoccupations ayant émergé quant au risque de mauvaise utilisation de produits de nettoyage et de désinfectants, le SCSDI a surveillé et évalué ces préoccupations. Une augmentation globale du nombre d'appels concernant plusieurs produits de nettoyage et désinfectants a eu lieu en concomitance avec la pandémie, certaines augmentations pouvant atteindre jusqu'à 400 % pour certains produits par rapport à la même période de l'année précédente.


Assuntos
COVID-19/epidemiologia , Desinfetantes/intoxicação , Exposição Ambiental/estatística & dados numéricos , Produtos Domésticos/intoxicação , Centros de Controle de Intoxicações/estatística & dados numéricos , Canadá/epidemiologia , Humanos
7.
J Expo Sci Environ Epidemiol ; 23(3): 259-67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23532094

RESUMO

Regulatory monitoring data and land-use regression (LUR) models have been widely used for estimating individual exposure to ambient air pollution in epidemiologic studies. However, LUR models lack fine-scale temporal resolution for predicting acute exposure and regulatory monitoring provides daily concentrations, but fails to capture spatial variability within urban areas. This study coupled LUR models with continuous regulatory monitoring to predict daily ambient nitrogen dioxide (NO(2)) and particulate matter (PM(2.5)) at 50 homes in Windsor, Ontario. We compared predicted versus measured daily outdoor concentrations for 5 days in winter and 5 days in summer at each home. We also examined the implications of using modeled versus measured daily pollutant concentrations to predict daily lung function among asthmatic children living in those homes. Mixed effect analysis suggested that temporally refined LUR models explained a greater proportion of the spatial and temporal variance in daily household-level outdoor NO(2) measurements compared with daily concentrations based on regulatory monitoring. Temporally refined LUR models captured 40% (summer) and 10% (winter) more of the spatial variance compared with regulatory monitoring data. Ambient PM(2.5) showed little spatial variation; therefore, daily PM(2.5) models were similar to regulatory monitoring data in the proportion of variance explained. Furthermore, effect estimates for forced expiratory volume in 1 s (FEV(1)) and peak expiratory flow (PEF) based on modeled pollutant concentrations were consistent with effects based on household-level measurements for NO(2) and PM(2.5). These results suggest that LUR modeling can be combined with continuous regulatory monitoring data to predict daily household-level exposure to ambient air pollution. Temporally refined LUR models provided a modest improvement in estimating daily household-level NO(2) compared with regulatory monitoring data alone, suggesting that this approach could potentially improve exposure estimation for spatially heterogeneous pollutants. These findings have important implications for epidemiologic studies - in particular, for research focused on short-term exposure and health effects.


Assuntos
Poluição do Ar em Ambientes Fechados , Asma/fisiopatologia , Análise de Regressão , Testes de Função Respiratória , Criança , Humanos
8.
J Air Waste Manag Assoc ; 61(3): 324-338, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28880138

RESUMO

The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM ≤ 2.5 µm [PM2.5] and ≤ 10 µm [PM10] in aerodynamic diameter),elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used. [Box: see text].

9.
J Air Waste Manag Assoc ; 61(2): 142-156, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28880768

RESUMO

The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM ≤2.5 µm [PM2.5] and ≤ 10 µm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used. [Box: see text].

10.
Int J Environ Res Public Health ; 7(8): 3080-99, 2010 08.
Artigo em Inglês | MEDLINE | ID: mdl-20948949

RESUMO

Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone) were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants' activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants' activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants.


Assuntos
Poluição do Ar em Ambientes Fechados , Exposição Ambiental , Fumar , Habitação , Humanos , Saskatchewan , Inquéritos e Questionários , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA