RESUMO
Many marine organisms produce bioactive molecules with unique characteristics to survive in their ecological niches. These enzymes can be applied in biotechnological processes and in the medical sector to replace aggressive chemicals that are harmful to the environment. Especially in the human health sector, there is a need for new approaches to fight against pathogens like Stenotrophomonas maltophilia which forms thick biofilms on artificial joints or catheters and causes serious diseases. Our approach was to use enrichment cultures of five marine resources that underwent sequence-based screenings in combination with deep omics analyses in order to identify enzymes with antibiofilm characteristics. Especially the supernatant of the enrichment culture of a stony coral caused a 40% reduction of S. maltophilia biofilm formation. In the presence of the supernatant, our transcriptome dataset showed a clear stress response (upregulation of transcripts for metal resistance, antitoxins, transporter, and iron acquisition) to the treatment. Further investigation of the enrichment culture metagenome and proteome indicated a series of potential antimicrobial enzymes. We found an impressive group of metalloproteases in the proteome of the supernatant that is responsible for the detected anti-biofilm effect against S. maltophilia. KEY POINTS: ⢠Omics-based discovery of novel marine-derived antimicrobials for human health management by inhibition of S. maltophilia ⢠Up to 40% reduction of S. maltophilia biofilm formation by the use of marine-derived samples ⢠Metalloprotease candidates prevent biofilm formation of S. maltophilia K279a by up to 20.
Assuntos
Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , Proteoma , Antibacterianos/farmacologia , Biofilmes , Metaloproteases/genética , Metaloproteases/farmacologiaRESUMO
Enzymatic degradation of algae cell wall carbohydrates by microorganisms is under increasing investigation as marine organic matter gains more value as a sustainable resource. The fate of carbon in the marine ecosystem is in part driven by these degradation processes. In this study, we observe the microbiome dynamics of the macroalga Fucus vesiculosus in 25-day-enrichment cultures resulting in partial degradation of the brown algae. Microbial community analyses revealed the phylum Pseudomonadota as the main bacterial fraction dominated by the genera Marinomonas and Vibrio. More importantly, a metagenome-based Hidden Markov model for specific glycosyl hydrolyses and sulphatases identified Bacteroidota as the phylum with the highest potential for cell wall degradation, contrary to their low abundance. For experimental verification, we cloned, expressed, and biochemically characterised two α-L-fucosidases, FUJM18 and FUJM20. While protein structure predictions suggest the highest similarity to a Bacillota origin, protein-protein blasts solely showed weak similarities to defined Bacteroidota proteins. Both enzymes were remarkably active at elevated temperatures and are the basis for a potential synthetic enzyme cocktail for large-scale algal destruction.
Assuntos
Parede Celular , Fucus , Metagenômica , Parede Celular/metabolismo , Fucus/metabolismo , Fucus/genética , Fucus/microbiologia , Metagenômica/métodos , Bacteroidetes/genética , Bacteroidetes/enzimologia , Metagenoma , Microbiota , FilogeniaRESUMO
Sustainable use of natural products is one of the key challenges for the future. An increasing focus is on marine organic matter, mostly algae. New biotechnological tools for processing high amounts of micro- and macroalgae are necessary for efficient industrial degradation of marine matter. Secreted glycosyl hydrolases can be enriched and tested on the specific algae cell wall polymers of all algae groups (Rhodophyta; Phaeophyceae; Chlorophyta/Charophyta). Metagenomic analyses established new possibilities to screen algae-associated microbiomes for novel degrading enzymes in combination with sequence-based function prediction.